CS229笔记:线性回归】的更多相关文章

CS229 笔记03 局部加权线性回归 Non-Parametric Learning Algorithm (非参数学习方法) Number of parameters grows with the size of sample. (参数的数目随着样本的数目增加而增加.) Locally Weighted Regression (局部加权线性回归) 损失函数的定义为: $ J_\Theta=\sum_i{w^{(i)}(y^{(i)}-\Theta^{{\rm T}}x^{(i)})^2} $…
CS229 笔记08 Kernel 回顾之前的优化问题 原始问题为: \[ \min_{w,b} \frac{1}{2}||w||^2\\[1.5em] {\text{s.t.}}y^{(i)}\left(w^{\rm T}x^{(i)}+b\right)\geq1 \] 原始问题的对偶问题为: \[ \max_{\alpha}\left\{ \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j}^m y{(i)} y^{(j)}\alpha_i \alph…
CS229 笔记07 Optimal Margin Classifier 回顾SVM \[ \begin{eqnarray*} h_{w,b}&=&g(w^{\rm T}x+b)\\[1em] g(z)&=&\begin{cases}1&z\geq0\\[1em]-1&z<0\end{cases}\\[1em] y&\in&\{-1,1\}\\[1em] \hat\gamma^{(i)}&=&y^{(i)}\left(w…
CS229 笔记06 朴素贝叶斯 事件模型 事件模型与普通的朴素贝叶斯算法不同的是,在事件模型中,假设文本词典一共有 \(k\) 个词,训练集一共有 \(m\) 封邮件,第 \(i\) 封邮件的词的个数为 \(n_i\) ,则 \(x^{(i)} \in \{1,2,\cdots,k\}^{n_i}\) . 此时模型的参数为: \[ \begin{eqnarray*} \phi_{k|y=0}&=&P(x_j=k|y=0)\\[1em] \phi_{k|y=1}&=&P(x…
CS229 笔记05 生成学习方法 判别学习方法的主要思想是假设属于不同target的样本,服从不同的分布. 例如 \(P(x|y=0) \sim {\scr N}(\mu_1,\sigma_1^2)\) , \(P(x|y=1) \sim {\scr N}(\mu_2,\sigma_2^2)\) . Gaussian Discriminant Analysis(高斯判别分析) 在这里还是讨论 \(y\in\{0,1\}\) 的二元分类问题, \(P(y)=\phi^y(1-\phi)^{1-y…
CS229 笔记04 Logistic Regression Newton's Method 根据之前的讨论,在Logistic Regression中的一些符号有: \[ \begin{eqnarray*} P(y=1|x;\Theta)&=&h_\Theta(x)=\frac{1}{1+e^{-\Theta^{{\rm T}}x}} \\[1em] P(y|x;\Theta)&=&[h_\Theta(x)]^y[1-h_\Theta(x)]^{1-y} \\[1em]…
CS229 笔记02 公式推导 $ {\text {For simplicity, Let }} A, B, C \in {\Bbb {R}}^{n \times n}. $ ​ $ {\bf {\text {Fact.1: }}} \text{If } a \in {\Bbb R}, {\rm tr}a=a $ ​ $ {\bf {\text {Fact.2: }}} {\rm{tr}}A={\rm{tr}}A^{\rm T} $ \[ \begin{eqnarray*} {\rm {tr}}…
线性回归问题 首先做一些符号上的说明: \(x^{(i)}\):特征(feature) \(y^{(i)}\):目标变量(target variables) \(\mathcal{X}\):特征空间 \(\mathcal{Y}\):目标变量空间 \((x^{(i)}, y^{(i)})\):训练样本(training example) \(\left\{(x^{(i)}, y^{(i)})| i = 1, 2, \dots, m\right\}\):训练集(training set) \(m\)…
网易公开课,监督学习应用.梯度下降 notes,http://cs229.stanford.edu/notes/cs229-notes1.pdf 线性回归(Linear Regression) 先看个例子,比如,想用面积和卧室个数来预测房屋的价格 训练集如下 首先,我们假设为线性模型,那么hypotheses定义为 , 其中x1,x2表示面积和#bedrooms两个feature 那么对于线性模型,更为通用的写法为 其中把θ和X看成向量,并且x0=1,就可以表示成最后那种,两个向量相乘的形式 那…
在线性回归.逻辑回归.softmax回归中,学习的结果是\(p(y|x;\theta)\),也就是给定\(x\)的条件下,\(y\)的条件概率分布,给定一个新的输入\(x\),我们求出不同输出的概率,我们称这一类学习算法为判别学习算法​(discriminative learning algorithm):这一节,我们介绍另一类学习算法:生成学习算法(generative learning algorithm),在生成学习算法中,我们对\(p(x|y)\)和\(p(y)\)建模,也就是说,我们求…