kmeans理解】的更多相关文章

最近看到Andrew Ng的一篇论文,文中用到了Kmeans和DL结合的思想,突然发现自己对ML最基本的聚类算法都不清楚,于是着重的看了下Kmeans,并在网上找了程序跑了下. kmeans是unsupervised learning最基本的一个聚类算法,我们可以用它来学习无标签的特征,其基本思想如下: 首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的. 初始化k个随机数据u1,u2,...,uk,每一个ui都是一个聚类中心,k就是分为k类,这些xn和uk都是向量. 根据下面两…
那就从k-means开始吧 对于机器学习的新手小白来说,k-means算法应该都会接触到吧.传统的k-means算法是一个硬聚类(因为要指定k这个参数啦)算法.这里利用百度的解释 它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则.K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小.算法采用误差平方和准则函数作为聚类准则函数. 看上去好难懂,实际上任务就是要聚类,然后将相关的点聚成一堆嘛.这里我们可以给出…
聚类算法是机器学习中的一大重要算法,也是我们掌握机器学习的必须算法,下面对聚类算法中的K-means算法做一个简单的描述: 一.概述 K-means算法属于聚类算法中的直接聚类算法.给定一个对象(或记录)的集合,将这些对象划分为多个组或者“聚簇”,从而使同组内的对象间比较相似而不同组对象间差异比较大:换言之,聚类算法就是将相似的对象放到同一个聚簇中,而将不相似的对象放到不同的聚簇中.由于在聚类过程中不使用到类别标签,所以相似性的概念要基于对象的属性进行定义.应用不同则相似性规则和聚类算法一般不太…
github:kmeans代码实现1.kmeans代码实现2(包含二分k-means) 本文算法均使用python3实现 1 聚类算法   对于"监督学习"(supervised learning),其训练样本是带有标记信息的,并且监督学习的目的是:对带有标记的数据集进行模型学习,从而便于对新的样本进行分类.而在"无监督学习"(unsupervised learning)中,训练样本的标记信息是未知的,目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进…
一.背景 煤矿地磅产生了一系列数据: 我想从这些数据中,取出最能反映当前车辆重量的数据(有很多数据是车辆上磅过程中产生的数据).我于是想到了聚类算法KMeans,该算法思想比较简单. 二.算法步骤 1.从样本中随机取出k个值,作为初始中心 2.以k个中心划分这些数据,分为k个组 3.重新计算出每个组的中心,作为新中心 4.如果初始中心和新中心不相等,则把新中心作为初始中心,重复2,3.反之,结束 注意: 1.我没有用严格的算法定义,怕不好理解 2.KMeans善于处理球形数据,因此随机取k个质心…
刚看了这个算法,理解如下,放在这里,备忘,如有错误的地方,请指出,谢谢 需要做聚类的数组我们称之为[源数组]需要一个分组个数K变量来标记需要分多少个组,这个数组我们称之为[聚类中心数组]及一个缓存临时聚类中心的数组,我们称之为[缓存聚类中心数组]然后初始化一个K长度的数组,值随机(尽量分布在原数组的更大的区间以便计算),用于和源数组进行比对计算. 下面是计算的部分:死循环遍历对源数据进行分组. 分组内遍历原数组的每个元素与聚类中心的每个元素的距离(差值的绝对值),将最小距离的聚类中心数组下标缓存…
一些概念 相关系数:衡量两组数据相关性 决定系数:(R2值)大概意思就是这个回归方程能解释百分之多少的真实值. Kmeans聚类大致就是选择K个中心点.不断遍历更新中心点的位置.离哪个中心点近就属于哪一类.中心点的更新取此类的平均点. 优点:速度快,原理简单 缺点:最终结果与初始点选择有段,容易陷入局部最优.并且还要提前知道K值 代码 import numpy as np def kmeans(X,k,maxIt): numPoints,numDim= X.shape dataSet=np.ze…
本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 简书:建设中... 知乎:建设中... 当我们在谈论kmeans(1) 引言 当希望快速了解或回顾某些算法的发展时,一般而言,大家都会选择阅读综述性文章,然后有选择性的阅读部分论文.而这种高效率的做法的负面,就是比较无趣的体验,毕竟一直都行走在别人规划好的思路中,总感觉少了点趣味性. 此系列文章一方面旨在回顾一些算法的历史演变轨迹:同时,看看能否挖掘…
    本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 其他:建设中- 当我们在谈论kmeans(2) 引言 上一篇文章,对从1969年以来,与kmeans相关文章的数据进行了简单描述,并对其中某些数据趋势尝试分析.这属于对数据的整体情况的一个简要分析. 本篇文章,则希望能通过简单介绍kmeans一路以来一些重要或者有意义的文章,进而能大概梳理出该算法的发展进程. 算法含有的问题 算法历程 196…
数据挖掘方法的提出,让人们有能力最终认识数据的真正价值,即蕴藏在数据中的信息和知识.数据挖掘 (DataMiriing),指的是从大型数据库或数据仓库中提取人们感兴趣的知识,这些知识是隐含的.事先未知的潜在有用信息,数据挖掘是目前国际上,数据库和信息决策领域的最前沿研究方向之一.因此分享一下很久以前做的一个小研究成果.也算是一个简单的数据挖掘处理的例子. 1.数据挖掘与聚类分析概述 数据挖掘一般由以下几个步骤: (l)分析问题:源数据数据库必须经过评估确认其是否符合数据挖掘标准.以决定预期结果,…