hadoop生态之mapReduce-Yarn】的更多相关文章

一,前言 Hadoop 2.0由三个子系统组成,分别是HDFS.YARN和MapReduce,其中,YARN是一个崭新的资源管理系统,而MapReduce则只是运行在YARN上的一个应用,如果把YARN看成一个云操作系统,那么MapReduce可认为是运行在这个操作系统上的App. 二,产生背景 YARN的出现主要是为了解决MapReduce1带来的一些问题,为了解决这些问题而开发出来的,有那些问题呢?如下: 1)JobTracker单点故障问题:如果Hadoop集群的JobTracker挂掉,…
1.了解对比Hadoop不同版本的特性,可以用图表的形式呈现. (1)0.20.0~0.20.2: Hadoop的0.20分支非常稳定,虽然看起来有些落后,但是经过生产环境考验,是 Hadoop历史上生命周期最长的一个分支,CDH3.CDH4虽然包含了0.21和0.22分支的新功能和补丁,但都是基于此分支. (2)0.20- append:020- append支持HDFS追加,由于该功能被认为是一个不稳定的潜在因素,所以它被单独新开了一个分支,并且没有任何新的 Hadoop的正式版基于此分支发…
转载请在页首明显处注明作者与出处 http://www.cnblogs.com/zhuxiaojie/p/7224772.html 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6.4 上一篇:hadoop系列二:HDFS文件系统的命令及JAVA客户端API 在下面可以看到统计一本小说(斗破苍穹)哪些词语出现了最多. 本来mapreducer只想写一篇的,可是发现写一篇太长了,所…
转载请在页首明显处注明作者与出处 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6.4 此为mapreducer的第二章节 这一章节中有着 计算共同好友,推荐可能认识的人 上一篇:hadoop系列三:mapreduce的使用(一) 一:说明 二:在开发工具在运行mapreducer 2.1:本地模式运行mapreducer 2.2:在开发工具中运行在yarn中 三:mapredu…
摘要: 通过前面的学习,大家已经了解了HDFS文件系统.有了数据,下一步就要分析计算这些数据,产生价值.接下来我们介绍Mapreduce计算框架,学习数据是怎样被利用的. 博主福利 给大家赠送一套hadoop视频课程 授课老师是百度 hadoop 核心架构师 内容包括hadoop入门.hadoop生态架构以及大型hadoop商业实战案例. 讲的很细致, MapReduce 就讲了 15 个小时. 学完后可以胜任 hadoop 的开发工作,很多人学的这个课程找到的工作. (包括指导书.练习代码.和…
Hadoop生态上几个技术的关系与区别:hive.pig.hbase 关系与区别 Pig 一种操作hadoop的轻量级脚本语言,最初又雅虎公司推出,不过现在正在走下坡路了.当初雅虎自己慢慢退出pig的维护之后将它开源贡献到开源社区由所有爱好者来维护.不过现在还是有些公司在用,不过我认为与其使用pig不如使用hive.:) 关系与区别  Pig"> Pig是一种数据流语言,用来快速轻松的处理巨大的数据. Pig包含两个部分:Pig Interface,Pig Latin. Pig可以非常方便…
Hadoop生态常用数据模型 一.TextFile 二.SequenceFile 1.特性 2.存储结构 3.压缩结构与读取过程 4.读写操作 三.Avro 1.特性 2.数据类型 3.avro-tools应用 4.在Hive中使用Avro 5.在Spark中使用Avro 四.Parquet 1.特性 2.数据结构 3.Java API 4.Parquet On Spark 5.Parquet On Hive 五.RC&ORC 1.特性 2.存储结构RC (Record Columnar)ORC…
Hadoop 中利用 mapreduce 读写 mysql 数据   有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,而这些特性正是 hbase 或者 hive 目前亟待改进的地方. 好了言归正传,简单的说说背景.原理以及需要注意的地方: 1.为了方便 MapReduce 直接访问关系型数据库(Mysql,Oracle),Hadoop提供了DBI…
转自:http://blog.csdn.net/v_july_v/article/details/6704077 从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到,以致后来初次接触Hadoop与MapReduce这两个东西,我便稍显兴奋,觉得它们很是神秘,而神秘的东西常能勾起我的兴趣,在看过介绍它们的文章或论文之后,觉得Hadoop是一项富有趣味和挑战性的技术,且它还牵扯到了一个我更加感兴趣的话题:海量数据处理. 由此,最近凡是空闲时,便在看“Hadoop”…
一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来说,自己完完全全实现一个并行计算程序难度太大,而MapReduce就是一种简化并行计算的编程模型,它使得那些没有多有多少并行计算经验的开发人员也可以开发并行应用程序.这也就是MapReduce的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛. 1.1 MapReduce是什么 Hadoop…