【zz】matlab 腐蚀膨胀算法】的更多相关文章

1.图像膨胀的Matlab实现: 可以使用imdilate函数进行图像膨胀,imdilate函数需要两个基本输入参数,即待处理的输入图像和结构元素对象.结构元素对象可以是strel函数返回的对象,也可以是一个自己定义的表示结构元素邻域的二进制矩阵.此外,imdilate还可以接受两个可选参数:PADOPT(padopt) ——影响输出图片的大小.PACKOPT(packopt).——说明输入图像是否为打包的二值图像(二进制图像).举个实例如下: 步骤1,首先创建一个包含矩形对象的二值图像矩阵.…
本篇文章要分享的是基于MATLAB的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,腐蚀在二值图像的基础上做“收缩”或“细化”操作,膨胀在二值图像的基础上做“加长”或“变粗”的操作. 什么是二值图像呢?把一幅图片看做成一个二维的数组,那么二值图像是一个只有0和1的逻辑数组,我们前面Sobel边缘检测后的图像输出边缘效果,设置个阈值,大于阈值输出为1,小于阈值输出为0,最后输出就是一幅二维图像了. 腐蚀 腐蚀是一种消除边界点,使边界向内部收缩的过程.可以用来消除小且无意义的物体.用3X3的结构元…
本篇文章我要写的是基于的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,,腐蚀在二值图像的基础上做"收缩"或"细化"操作,膨胀在二值图像的基础上做"加长"或"变粗"的操作.那么什么是二值图像呢?把一幅图片看做成一个二维的数组,那么二值图像是一个只有0和1的逻辑数组,我们前面Sobel边缘检测后的图像输出边缘效果,设置个阈值,大于阈值输出为1,小于阈值输出为0,最后输出就是一幅二维图像了. 上一篇我是直接用MATLAB处理后的…
腐蚀膨胀是图像形态学比较常见的处理,腐蚀一般可以用来消除噪点,分割出独立的图像元素等. 一般腐蚀操作对二值图进行处理,腐蚀操作如下图,中心位置的像素点是否与周围领域的像素点颜色一样(即是否是白色点,即值是否为255),若一致,则保留,不一致则该点变为黑色(值即为0) opencv中的腐蚀操作: CVAPI(void) cvErode( const CvArr* src, CvArr* dst, IplConvKernel* element CV_DEFAULT(NULL), ) ); 前两个参数…
利用腐蚀膨胀操作实现对椭圆周围线条的消除,椭圆的大小不变 代码如下: #include "cv.h" #include "highgui.h" int main() { IplImage *img,*img_erode,*img_dilate; img = cvLoadImage("test.jpg"); img_erode = cvCreateImage(cvGetSize(img),,); img_dilate = cvCreateImage…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 形态学操作简单来说,就是改变物体的形状,下面学习一下,首先本文的目录如下: 1,定义结构元素 2,腐蚀和膨胀 3,开运算和闭运算 4,礼帽/顶帽,黑帽算法 5,梯度运算 6,形态学运算 检测边和角点(1,检测边缘 : 2,检测拐角) 1,定义结构元素 形态学操作的原理:在特殊领域运算形式--结构元素(S…
DFP算法是本科数学系中最优化方法的知识,也是无约束最优化方法中非常重要的两个拟Newton算法之一,上一周写了一周的数学软件课程论文,姑且将DFP算法的实现细节贴出来分享给学弟学妹参考吧,由于博客不支持数学公式,所以就不累述算法原理及推导公式了. DFP算法流程图 先给出DFP算法迭代流程图,总体上是拟Newton方法的通用迭代步骤,唯独在校正公式的地方有所区别. MATLAB实现DFP 基于此图便可以设计DFP算法的MATLAB程序: 对分法及加步探索法的实现 首先由于DFP算法中需要利用一…
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写阿拉伯数字识别是图像内容识别中较为简单的一个应用领域,原因有被识别的模式数较少(只有0到9,10个阿拉伯数字).阿拉伯数字笔画少并且简单等.手写阿拉伯数字的识别采用的方法相对于人脸识别.汉字识别等应用领域来说可以采用更为灵活的方法,例如基于规则的方法.基于有限状态自动机的方法.基于统计的方法和基于神…
此程序为优化后的分水岭算法,避免了图像过分割 I= imread('D:\Images\pic_loc\1870405130305041503.jpg'); imshow(I); h=fspecial('sobel'); %h = fspecial(type) creates a two-dimensional filter h of the specified type. fspecial returns h as %a correlation kernel, which is the app…
clear all; clc; %% %算法 %输入:训练数据集T = {(x1,y1),(x2,y2),...,(xn,yn)};学习率η %输出:w,b;感知机模型f(x) = sign(w*x+b) %()选取初值w0,b0 %()在训练集中选取数据(xi,yi) %()如果yi(w*xi+b)<= % w = w+η*yi*xi % b = b+ηyi %()转至(),直至训练集中没有误分类点 %% %初始化 X = [ ; ; -];%训练集 [sn,fn] = size(X); y…