Miller_Rabbin大素数测试】的更多相关文章

伪素数: 如果存在和n互素的正整数a满足a^(n-1)≡1(mod n),则n是基于a的伪素数. 是伪素数但不是素数的个数是非常非常少的,所以如果一个数是伪素数,那么他几乎是素数. Miller_Rabbin素数测试:随机选k个a进行a^(n-1)≡1(mod n)测试,如果都满足则判断n是素数. a^(n-1)%mod用快速幂计算.对于大数相乘(两个大于int的数相乘),中间结果可能溢出,所以需要用快速幂思想进行乘法取模. Miller_Rabbin的出错率为2^(-k). //Miller…
根据费马小定理: 对于素数n,a(0<a<n),a^(n-1)=1(mod n) 如果对于一个<n的正整数a,a^(n-1)!=1(mod n),则n必不是素数. 然后就可以随机生成  <n的数,如果都满足,那n就极有可能是素数. 看书上说,一次素数测试的成功率是 3/4,也就是失败率是1/4,那测m次是错误的概率为:(1/4)^m.可见m稍微大一点就基本不会出错. 但是还有一种数叫,卡迈克尔数. 卡迈克尔数: 一个合数n,对所有满足 gcd(b,n)=1的正整数b都有b^(n-1…
基本原理: 费尔马小定理:如果p是一个素数,且0<a<p,则a^(p-1)%p=1.        利用费尔马小定理,对于给定的整数n,可以设计素数判定算法,通过计算d=a^(n-1)%n来判断n的素性,当d!=1时,n肯定不是素数,当d=1时,n  很可能是素数. 二次探测定理:如果p是一个素数,且0<x<p,则方程x^2%p=1的解为:x=1或x=p-1.        利用二次探测定理,可以再利用费尔马小定理计算a^(n-1)%n的过程中增加对整数n的二次探测,一旦发现违背二…
Miller-Rabin算法本质上是一种概率算法,存在误判的可能性,但是出错的概率非常小.出错的概率到底是多少,存在严格的理论推导. 一.费马小定理 假如p是质数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p) 如果存在a<p,且a(p-1) % p != 1,则p肯定不是素数. 二.有限域上的平方根定理 三.Miller-Rabin算法 对于一个大数n,判断n是不是素数的时候,可以先考虑a(n-1)≡ 1(mod n) 对于n-1,一定可以拆分成2s+d: 可以从x = ad开始…
PS:本人第一次写随笔,写的不好请见谅. 接触MillerRabin算法大概是一年前,看到这个算法首先得为它的神奇之处大为赞叹,竟然可以通过几次随机数据的猜测就能判断出这数是否是素数,虽然说是有误差率,但是相对于他比其他素数判断的高效,真的是可以说是完美级.那时候忙于找工作,所以也没有细究,现在空下来终于对这个算法有了一定的理解. 先说两个定理: (1) 当x<p时,满足x^(p-1) % p = 1,说明x与p互质: (2) 当x<p时,满足x^2 % p = 1; x的解为 x = 1 或…
抄别人的 #include<stdio.h> #include<string.h> #include<algorithm> #include<stdlib.h> #include<time.h> #include<map> using namespace std; typedef long long ll; map<ll,int>m1; ll random(ll n) { return ((double)rand()/RA…
Senior PanⅡ Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others) Problem Description Senior Pan had just failed in his math exam, and he can only prepare to make up for it. So he began a daily task with Master Dong, D…
Miller-rabin算法是一个用来快速判断一个正整数是否为素数的算法.它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于1.也就是对于所有小于p的正整数a来说都应该复合a^(p-1) mod p恒等于1.那么根据逆否命题,对于一个p,我们只要举出一个a(a<p)不符合这个恒等式,则可判定p不是素数.Miller-rabin算法就是多次用不同的a来尝试p是否为素数. 但是每次尝试过程中还做了一个优化操作,以提高用少量的a检测出p不是素数的概率.这个优化叫做…
普通的素数测试我们有O(√ n)的试除算法.事实上,我们有O(s*log³n)的算法. 下面就介绍一下Miller_Rabbin算法思想: 定理一:假如p是质数,且(a,p)=1,那么a^(p-1)≡1(mod p).即假如p是质数,且a,p互质,那么a的(p-1)次方除以p的余数恒等于1.(费马小定理) 定理二:如果p是一个素数,那么对于x(0<x<p),若x^2 mod p 等于1,则x=1或p-1. 它利用了费马小定理,即:如果p是质数,且a,p互质,那么a^(p-1) mod p恒等于…
若干年之前的一道题,当时能写出来还是超级开心的,虽然是个板子题.一直忘记写博客,备忘一下. 米勒拉判大素数,关于米勒拉宾是个什么东西,传送门了解一下:biubiubiu~ B. Goldbach 题目传送门 自己看题意吧,直接贴代码了. 代码: #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<al…