BZOJ 1406: [AHOI2007]密码箱( 数论 )】的更多相关文章

(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------------------------------------ #include<cstdio> #include<cstring> #include<algorithm> #include<cmath>   using namespace std;   type…
二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k *n = 1 (x + 1) * (x - 1) = k * n 设 n = a * b 则 a * b | (x + 1) * (x - 1) 那么枚举b即可 */ #include <cstdio> #include <cmath> #include <set> type…
1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 701  Solved: 396[Submit][Status] Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示.经过艰苦的破译,小可可发现,这些图标表示一个数以及这个数与密码的关系.假设这个数是n,密码为x,那么可以得到如下表述: 密码…
推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 50000 #define setIO(s) freopen(s".in","r",stdin) using namespace std; namespace Math { ll pp,answer; ll exgcd(ll a,ll b,ll &x,ll &y…
1406: [AHOI2007]密码箱 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1591  Solved: 944[Submit][Status][Discuss] Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示.经过艰苦的破译,小可可发现,这些图标表示一个数以及这个数与密码的关系.假设这个数是n,密码为x,那么可以…
http://www.lydsy.com/JudgeOnline/problem.php?id=1406 题意:求$0<=x<n, 1<=n<=2,000,000,000, 且x^2 \equiv 1 \pmod{n}$的所有$x$ #include <bits/stdc++.h> using namespace std; typedef long long ll; set<ll> s; int main() { ll n; scanf("%lld…
在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子背面刻着的古代图标,就是对密码的提示.经过艰苦的破译,小可可发现,这些图标表示一个数以及这个数与密码的关系.假设这个数是n,密码为x,那么可以得到如下表述: 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 小可可知道满足上述条件的x可能不止一个,所以一定要把所有满足条件的x计算出来,密码肯定就在其中.计算的过程是很艰苦的,你能否编写一个程序来帮助小可可呢?(题中x,…
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1406 题意概括 求所有数x,满足 x<n 且 x2≡1 (mod  n). n<=2 000 000 000 题解 对于所有的数x,如果 x2 ≡ 1 (mod  n), 那么有  x2 mod n - 1 = 0 可以化为  (x + 1)(x - 1) mod n = 0 所以我们可以枚举 x - 1 以及 x+1 ,然后判断约数,这样答案会有重复,那么全部扔进一个set里面就好了. 代码…
bzoj 4176 Lucas的数论 和约数个数和那题差不多.只不过那个题是多组询问,这题只询问一次,并且 \(n\) 开到了 \(10^9\). \[ \begin{align*} \sum_{i=1}^N \sum_{j=1}^N f(ij)&= \sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j}[gcd(x,y)=1]\\&= \sum_{i=1}^N \sum_{j=1}^N \sum_{x|i} \sum_{y|j} \sum_{d|g…
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} a_{\frac n d} \] 双重因子 \[ \sum_{k | n} \sum_{j | k} a_{k, j} = \sum_{k | n} \sum_{j | \frac n k} a_{jk, k} \] \[ \sum_{n | k} \sum_{k | j} a_{k, j} = \…