4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status][Discuss] Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)]…
Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)表示i, j的最大公约数.Doris的表格中共有n×m个数,她想知道这些数的乘积是多少.答案对10^9+7取模. Input 有多组测试数据. 第一个一个数T,表示数据组数. 接下来T行,每行两个数n…
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 这个好像简单些啊,只要不犯sb错误 [Update] 真的算反演中比较裸的题了... \(Description\) 用\(f[i]\)表示\(Fibonacci\)数列的第\(i\)项,求\[\prod_{i=1}^n\prod_{j=1}^mf[\gcd(i,j)]\mod (10^9+7)\] \(Solution\) \[ \begin{aligned} Ans &=\prod_{i=1}^n\pr…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4816 \( ans=\prod\limits_{d=1}^{n}f[d]^{\sum\limits_{l=1}^{\frac{n}{d}}\left\lfloor\frac{n}{l*d}\right\rfloor*\left\lfloor\frac{m}{l*d}\right\rfloor} \) \(=\prod\limits_{D=1}^{n}\prod\limits_{d|D}f[…
大力反演出奇迹. 然后xjb维护. 毕竟T1 #include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) fo…
把题意简化,就是要求 \[ \prod_{d=1}^{min(n,m)}f[d]^{\sum_{i=1}^{n}\sum_{j=1}^{m}e[gcd(i,j)==d]} \] 把幂用莫比乌斯反演转化,得到 \[ \prod_{d=1}^{min(n,m)}f[d]^{\sum_{k=1}^{min(\frac{n}{d},\frac{m}{d})}\mu(k)\left \lfloor \frac{n}{dk} \right \rfloor\left \lfloor \frac{m}{dk}…
题目链接 \(Description\) 用\(f_i\)表示\(fibonacci\)数列第\(i\)项,求\(\prod_{i=1}^{n}\prod_{j=1}^{m}f[gcd(i,j)]\). \(T<=10^3,n,m≤10^6\) \(Solution\) 再来推式子(默认\(n<m\)) \[\prod_{i=1}^{n}\prod_{j=1}^mf[gcd(i,j)]\] 按照套路枚举\(gcd\) \[\prod_{d=1}^n\prod_{i=1}^{n/d}\prod_…
4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 666  Solved: 312 Description Doris刚刚学习了fibonacci数列.用f[i]表示数列的第i项,那么 f[0]=0 f[1]=1 f[n]=f[n-1]+f[n-2],n>=2 Doris用老师的超级计算机生成了一个n×m的表格,第i行第j列的格子中的数是f[gcd(i,j)],其中gcd(i,j)表示i, j的最大公约数.D…
题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) 数列第 \(i\) 项(\(f_0=0\),\(f_1=1\),\(f_i=f_{i-1}+f_{i-2}\)),求 \[\left(\prod\limits_{i=1}^n\prod\limits_{j=1}^mf_{\gcd(i,j)}\right)\bmod(10^9+7) \] 数据范围:\(T\l…
P3704 [SDOI2017]数字表格 首先根据题意写出答案的表达式 \[\large\prod_{i=1}^n\prod_{j=1}^mf_{\gcd(i,j)} \] 按常规套路改为枚举 \(d=\gcd(i,j)\) (不妨设 \(n\le m\) ) \[\large\prod_{d=1}^n{f_d}^{\sum_{i=1}^n\sum_{j=1}^m~[(i,j)=d]} \] 指数上的式子很熟悉了,单独拿出来推一下 \[\begin{aligned} \sum_{i=1}^n\s…