Pedestrian Detection aided by Deep Learning Semantic Tasks CVPR 2015 本文考虑将语义任务(即:行人属性和场景属性)和行人检测相结合,以语义信息协助进行行人检测.先来看一下大致的检测结果(TA-CNN为本文检测结果): 可以看出,由于有了属性信息的协助,其行人检测的精确度有了较大的提升.具体网络架构如下图所示: 首先从各个数据集上进行行人数据集的收集和整理,即:从Caltech上收集行人正样本和负样本,然后从其他数据集上收集 ha…
目录 一. 存在的问题 二. 解决的方案 1.点云特征 2.解决方法 三. 网络结构 四. 理论证明 五.实验效果 1.应用 (1)分类: ModelNet40数据集 (2)部件分割:ShapeNet part数据集 (3)语义分割/检测 2.网络结构分析 (1)针对无序性的解决方法比较 (2)输入和特征对齐的有效性验证 (3)鲁棒性测试(数据缺失.异常值.点扰动) 3.可视化(解释为什么鲁棒性) 4.时间和空间复杂度分析 六.仍存在的问题 七.代码分析 PointNet: Deep Learn…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很多共同的 idea:一个 online 的 agent 碰到的观察到的数据序列是非静态的,然后就是,online的 RL 更新是强烈相关的.通过将 agent 的数据存储在一个 experience replay 单元中,数据可以从不同的时间步骤上,批处理或者随机采样.这种方法可以降低 non-st…
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advancements-deep-learning-2016/ 主要挑战是unsupervised learning 无监督学习,2016年大量的研究专注于generative models 生成模型.几大巨头谷歌和脸书分别创新于自然语言处理NLP. 无监督学习 无监督学习指的是在没有额外信息的新数据中,提取…
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对这些知识内容的理解与补充.(本笔记配合李宏毅老师的视频一起使用效果更佳!) Lecture 6: Brief Introduction of Deep Learning 本节课主要围绕Deep Learing三步骤: (1)function set (2)goodness of function (…
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS算法都侧重于搜索cell的结构,即当搜索得到一种cell结构后只是简单地将固定数量的cell按链式结构连接起来组成最终的网络模型.AutoDeeplab则将如何cell的连接方式也纳入了搜索空间中,进一步扩大了网络结构的范围. dense image prediction 之前的大多数NAS算法都是…
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model compression for deep learning based speech enhancem…
Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Goo…
目录 摘要 一.前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二.本文idea 2.1 idea来源 2.2 初始思路 2.3 改进的思路 2.4 进一步创新 2.5 本文贡献 三.PointConv 3.1 2D图像与3D点云的区别 3.2 3D连续卷积 -> 点云卷积 3.2.1 原始PointConv 3.2.2 高效的PointConv 3.2.3 PointDeConv 四.实验 4.1 在ModelNet40上的…
目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(feature learning) 2.解决点云密度不均问题: (1)多尺度分组(MSG) (2)多分辨率分组(MRG) 三.网络结构 四.实验 4.1欧式度量空间中的点云分类 4.2语义场景标注的点集分割 4.3非欧几里德度量空间中的点集分类 4.4特征可视化 五.总结及存在的问题 六.代码解读 Poi…
Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方法,利用强化学习的方法,直接从高维的感知输入中学习控制策略.模型是一个卷积神经网络,利用 Q-learning的一个变种来进行训练,输入是原始像素,输出是预测将来的奖励的 value function.将此方法应用到 Atari 2600 games 上来,进行测试,发现在所有游戏中都比之前的方法有效,甚至在…
Human-level control through deep reinforcement learning Nature 2015 Google DeepMind Abstract RL 理论 在动物行为上,深入到心理和神经科学的角度,关于在一个环境中如何使得 agent 优化他们的控制,提供了一个正式的规范.为了利用RL成功的接近现实世界的复杂度的环境中,然而,agents 遇到了一个难题:他们必须从高维感知输入中得到环境的有效表示,然后利用这些来将过去的经验应用到新的场景中去.显著地,人…
论文地址:https://arxiv.org/abs/1707.06168 代码地址:https://github.com/yihui-he/channel-pruning 采用方法 这篇文章主要讲诉了采用裁剪信道(channel pruning)的方法实现深度网络的加速.主要方法有两点: (1)LASSO regression based channel selection. (2)least square reconstruction. 实现效果 VGG-16实现5x的加速,0.3%误差增加…
论文链接:http://openaccess.thecvf.com/content_ICCV_2017/papers/Wu_Self-Organized_Text_Detection_ICCV_2017_paper.pdf 代码链接:https://gitlab.com/rex-yue-wu/ISI-PPT-Text-Detector 摘要 该论文由Yue Wu等人发表于ICCV 2017.针对文字检测中提取文字的行级候选区需要大量后处理.复杂且耗时的问题,提出了一种基于边界学习的场景文字检测方…
文章目录 源代码github地址 摘要 2CLSTM 过程 1. 词嵌入 2. 2LSTM处理 3. CNN学习LSGCNN学习LSG 4. Softmax分类 源代码github地址 https://github.com/sunxiangguo/2CLSTM 但是没有开放数据集, 所以需要自己填数据集 摘要 这篇文章说他们认为文本的结构也是一个包含人物性格的重要特征,所以他们使用了一个名叫2CLSTM的模型,由一个双向的LSTM(Long Short Term Memory networks)…
这篇文章的主要贡献点在于: 1.实验证明仅仅利用图像整体的弱标签很难训练出很好的分割模型: 2.可以利用bounding box来进行训练,并且得到了较好的结果,这样可以代替用pixel-level训练中的ground truth: 3.当我们用少量的pixel-level annotations和大量的图像整体的弱标签来进行半监督学习时,其训练效果可和全部使用pixel-level annotations差不多: 4.利用额外的强弱标签可以进一步提高效果. 这是用image-level lab…
摘要 神经网络在多个领域都取得了不错的成绩,但是神经网络的合理设计却是比较困难的.在本篇论文中,作者使用 递归网络去省城神经网络的模型描述,并且使用 增强学习训练RNN,以使得生成得到的模型在验证集上取得最大的准确率. 在 CIFAR-10数据集上,基于本文提出的方法生成的模型在测试集上得到结果优于目前人类设计的所有模型.测试集误差率为3.65%,比之前使用相似结构的最先进的模型结构还有低0.09%,速度快1.05倍. 在 Penn Treebank数据集上,根据本文算法得到的模型能够生成一个新…
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04-24 14:49:10 Paper:https://arxiv.org/pdf/1810.10804.pdf 在过去的许多年,大家一直认为网络结构的设计是人类的事情.但是,近些年 NAS 的发展,打破了这种观念,用自动化的方法在给定的数据上设计合适的网络结构,变的势不可挡.本文在语义分割的任务上,尝…
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:45:44 Paper:https://arxiv.org/pdf/1901.02985 Offical TensorFlow Code: https://github.com/tensorflow/models/blob/master/research/deeplab/core/nas_networ…
motivation Active Learning 存在的重要问题:现实数据极度不平衡,有许多类别很少见(rare),又有很多类别是冗余的(redundancy),又有些数据是 OOD 的(out-of-distribution). 1. 不同的次模函数 提出三种次模函数的变体: 次模条件增长(Submodular Conditional Gain, SCG),越大说明差异越大: $$f(\mathcal{A}|\mathcal{P})=f(\mathcal{A}\cup\mathcal{P}…
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 3.2 音频 3.3 图像 3.4 多模态 4. Detailed overview 4.1 文本 4.1.1 LIWC/MRC 4.1.2 Receptiviti API 4.1.3 社交网络文本研究 4.1.4 深度神经网络应用 4.1.5 SenticNet 5 4.1.6 weighted…
一.读前说明 1.论文"Densely Connected Convolutional Networks"是现在为止效果最好的CNN架构,比Resnet还好,有必要学习一下它为什么效果这么好. 2.代码地址:https://github.com/liuzhuang13/DenseNet 3.这篇论文主要参考了Highway Networks,Residual Networks (ResNets)和GoogLeNet,所以在读本篇论文之前,有必要读一下这几篇论文,另外还可以看一下Very…
之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得懂# UFDL链接 : http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial 自编码器( Autoencoders ):(概述) 自编码器是只有一层隐藏节点,输入和输出具有相同节点数的神经网络. 自编码器的目的是求的函数 . 也…
论文信息 论文标题:Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering论文作者:Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, Mingyi Hong论文来源:2016, ICML论文地址:download论文代码:download 1 Introduction 为了恢复"聚类友好"的潜在表示并更好地聚类数据,我们提出了一种联合 DR (dimens…
Deep Learning(深度学习)学习笔记(不断更新): Deep Learning(深度学习)学习笔记之系列(一) 深度学习(Deep Learning)资料(不断更新):新增数据集,微信公众号写的更全些 为了您第一时间能获取到最新资料,请关注微信公众号:大数据技术宅 深度学习(Deep Learning)资料大全(不断更新) 相关Paper(不断更新) 笔者先从多个渠道整理了几篇,后续边看边更新. 1.Densely Connected Convolutional Networks 2.…
Learning Cross-Modal Deep Representations for Robust Pedestrian Detection 2017-04-11  19:40:22  Motivation: 本文主要是考虑了在光照极端恶劣的情况下,如何充分的利用 thermal data 进行协助学习提升 可见光图像的 特征表达能力,而借鉴了 ICCV 2015 年的一个文章,称为:监督迁移的方法,以一种模态的特征为 label,以监督学习的方式实现无监督学习.说到这里可能比较让人糊涂,…
最近正在研究行人检测,学习了一篇2014年发表在ECCV上的一篇综述性的文章,是对行人检测过去十年的一个回顾,从dataset,main approaches的角度分析了近10年的40多篇论文提出的方法,发现有三种方法(DPM变体,Deep networks,Decision forests)都取得了相似的最好结果,并总结了feature,additional data以及context information等对于detection quality的影响. 1.Introduction 行人检…
最近正在研究行人检测,学习了一篇2014年发表在ECCV上的一篇综述性的文章,是对行人检测过去十年的一个回顾,从dataset,main approaches的角度分析了近10年的40多篇论文提出的方法,发现有三种方法(DPM变体,Deep networks,Decision forests)都取得了相似的最好结果,并总结了feature,additional data以及context information等对于detection quality的影响. 1.Introduction 行人检…
1.结构图 Introduction Feature extraction, deformation handling, occlusion handling, and classification are four important components in pedestrian detection. Existing methods learn or design these components either individually or sequentially. The inte…