关于torch.nn.Linear的笔记】的更多相关文章

关于该类: torch.nn.Linear(in_features, out_features, bias=True) 可以对输入数据进行线性变换: $y  = x A^T + b$ in_features: 输入数据的大小. out_features: 输出数据的大小. bias: 是否添加一个可学习的 bias,即上式中的 $b$. 该线性变换,只对输入的 tensor 的最后一维进行: 例如我们有一个Linear层如下: m = nn.Linear(20, 30) 示例1: input =…
import torch x = torch.randn(128, 20) # 输入的维度是(128,20)m = torch.nn.Linear(20, 30) # 20,30是指维度output = m(x)print('m.weight.shape:\n ', m.weight.shape)print('m.bias.shape:\n', m.bias.shape)print('output.shape:\n', output.shape) # ans = torch.mm(input,t…
模型训练的三要素:数据处理.损失函数.优化算法    数据处理(模块torch.utils.data) 从线性回归的的简洁实现-初始化模型参数(模块torch.nn.init)开始 from torch.nn import init # pytorch的init模块提供了多中参数初始化方法 init.normal_(net[0].weight, mean=0, std=0.01) #初始化net[0].weight的期望为0,标准差为0.01的正态分布tensor init.constant_(…
先看一下CLASS有哪些参数: torch.nn.Conv2d( in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros' ) 可以对输入的张量进行 2D 卷积. in_channels: 输入图片的 channel 数. out_channels: 输出图片的 channel 数. kernel_size: 卷积核的大小.…
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
[转载]Pytorch中nn.Linear module的理解 本文转载并援引全文纯粹是为了构建和分类自己的知识,方便自己未来的查找,没啥其他意思. 这个模块要实现的公式是:y=xAT+*b 来源:https://blog.csdn.net/u012936765/article/details/52671156 Linear 是module的子类,是参数化module的一种,与其名称一样,表示着一种线性变换. 创建 parent 的init函数 Linear的创建需要两个参数,inputSize…
在刷官方Tutorial的时候发现了一个用法self.v = torch.nn.Parameter(torch.FloatTensor(hidden_size)),看了官方教程里面的解释也是云里雾里,于是在栈溢网看到了一篇解释,并做了几个实验才算完全理解了这个函数.首先可以把这个函数理解为类型转换函数,将一个不可训练的类型Tensor转换成可以训练的类型parameter并将这个parameter绑定到这个module里面(net.parameter()中就有这个绑定的parameter,所以在…
class torch.nn.Linear(in_features,out_features,bias = True )[来源] 对传入数据应用线性变换:y = A x+ b 参数: in_features - 每个输入样本的大小 out_features - 每个输出样本的大小 bias - 如果设置为False,则图层不会学习附加偏差.默认值:True 代码: m = nn.Linear(, ) input = autograd.Variable(torch.randn(, )) outpu…
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和nn.functional之间的差别如下,我们以conv2d的定义为例 torch.nn.Conv2d import torch.nn.functional as F class Conv2d(_ConvNd): def __init__(self, in_channels, out_channels…
PyTorch : torch.nn.xxx 和 torch.nn.functional.xxx 在写 PyTorch 代码时,我们会发现一些功能重复的操作,比如卷积.激活.池化等操作.这些操作分别可以通过 torch.nn.xxx 和 torch.nn.functional.xxx 来实现. 首先可以观察源码: eg:torch.nn.Conv2d CLASS torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, p…