首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
【分类算法】朴素贝叶斯(Naive Bayes)
】的更多相关文章
机器学习算法实践:朴素贝叶斯 (Naive Bayes)(转载)
前言 上一篇<机器学习算法实践:决策树 (Decision Tree)>总结了决策树的实现,本文中我将一步步实现一个朴素贝叶斯分类器,并采用SMS垃圾短信语料库中的数据进行模型训练,对垃圾短信进行过滤,在最后对分类的错误率进行了计算. 与决策树分类和k近邻分类算法不同,贝叶斯分类主要借助概率论的知识来通过比较提供的数据属于每个类型的条件概率, 将他们分别计算出来然后预测具有最大条件概率的那个类别是最后的类别.当然样本越多我们统计的不同类 型的特征值分布就越准确,使用此分布进行预测则会更加准确.…
朴素贝叶斯 Naive Bayes
2017-12-15 19:08:50 朴素贝叶斯分类器是一种典型的监督学习的算法,其英文是Naive Bayes.所谓Naive,就是天真的意思,当然这里翻译为朴素显得更学术化. 其核心思想就是利用贝叶斯公式来计算各个类别的概率,最后从中选择概率最大的那个作为最终的结果. 贝叶斯公式:…
python机器学习(三)分类算法-朴素贝叶斯
一.概率基础 概率定义:概率定义为一件事情发生的可能性,例如,随机抛硬币,正面朝上的概率. 联合概率:包含多个条件,且所有条件同时成立的概率,记作:…
Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)
朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM). 和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率.同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单. 理论上,N…
分类算法之贝叶斯(Bayes)分类器
摘要:旁听了清华大学王建勇老师的 数据挖掘:理论与算法 的课,讲的还是挺细的,好记性不如烂笔头,在此记录自己的学习内容,方便以后复习. 一:贝叶斯分类器简介 1)贝叶斯分类器是一种基于统计的分类器,它根据给定样本属于某一个具体类的概率来对其进行分类. 2)贝叶斯分类器的理论基础是贝叶斯理论. 3)贝叶斯分类器的一种简单形式是朴素贝叶斯分类器,跟随机森林.神经网络等分类器都有可比的性能. 4)贝叶斯分类器是一种增量型的分类器. 二:贝叶斯理论 第一次接触贝叶斯还是本科学概率论的时候,那时候…
朴素贝叶斯(Naive Bayesian)
简介 Naive Bayesian算法 也叫朴素贝叶斯算法(或者称为傻瓜式贝叶斯分类) 朴素(傻瓜):特征条件独立假设 贝叶斯:基于贝叶斯定理 这个算法确实十分朴素(傻瓜),属于监督学习,它是一个常用于寻找决策面的算法. 基本思想 (1)病人分类举例 有六个病人 他们的情况如下: 症状 职业 病名 打喷嚏 护士 感冒 打喷嚏 农夫 过敏 头痛 建筑工人 脑震荡 头痛 建筑工人 感冒 打喷嚏 教师 感冒 头痛 教师 脑震荡 根据这张表 如果来了第七个病人 他是一个 打喷嚏 的 建筑工人 那么他患上…
(ZT)算法杂货铺——分类算法之贝叶斯网络(Bayesian networks)
https://www.cnblogs.com/leoo2sk/archive/2010/09/18/bayes-network.html 2.1.摘要 在上一篇文章中我们讨论了朴素贝叶斯分类.朴素贝叶斯分类有一个限制条件,就是特征属性必须有条件独立或基本独立(实际上在现实应用中几乎不可能做到完全独立).当这个条件成立时,朴素贝叶斯分类法的准确率是最高的,但不幸的是,现实中各个特征属性间往往并不条件独立,而是具有较强的相关性,这样就限制了朴素贝叶斯分类的能力.这一篇文章中,我们接着上一篇文章的例…
机器学习集成算法--- 朴素贝叶斯,k-近邻算法,决策树,支持向量机(SVM),Logistic回归
朴素贝叶斯: 是使用概率论来分类的算法.其中朴素:各特征条件独立:贝叶斯:根据贝叶斯定理.这里,只要分别估计出,特征 Χi 在每一类的条件概率就可以了.类别 y 的先验概率可以通过训练集算出 k-近邻算法: 简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类. 决策树:最优划分属性,结点的“纯度”越来越高. 即如何选择最优划分属性,一般而言,随着划分过程不断进行,我们希望决策树的分支节点所包含的样本尽可能属于同一类别,即结点的“纯度”越来越高. 支持向量机(SVM)是支持(或支撑)平…
机器学习理论基础学习3.5--- Linear classification 线性分类之朴素贝叶斯
一.什么是朴素贝叶斯? (1)思想:朴素贝叶斯假设 条件独立性假设:假设在给定label y的条件下,特征之间是独立的 最简单的概率图模型 解释: (2)重点注意:朴素贝叶斯 拉普拉斯平滑(Laplace Smoothing) 为什么要做平滑处理? 零概率问题,就是在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0.在文本分类的问题中,当一个词语没有在训练样本中出现,该词语调概率为0,使用连乘计算文本出现概率时也为0.这是不合理的,…
【机器学习速成宝典】模型篇05朴素贝叶斯【Naive Bayes】(Python版)
目录 先验概率与后验概率 条件概率公式.全概率公式.贝叶斯公式 什么是朴素贝叶斯(Naive Bayes) 拉普拉斯平滑(Laplace Smoothing) 应用:遇到连续变量怎么办?(多项式分布,高斯分布) Python代码(sklearn库) 先验概率与后验概率 引例 想象有 A.B.C 三个不透明的碗倒扣在桌面上,已知其中有(且仅有)一个瓷碗下面盖住一个鸡蛋.此时请问,鸡蛋在 A 碗下面的概率是多少?答曰 1/3. 现在发生一件事:有人揭开了 C 碗,发现 C 碗下面没有蛋.此时再问:鸡…