spark中的cache和persist的区别】的更多相关文章

在使用中一直知其然不知其所以然的地使用RDD.cache(),系统的学习之后发现还有一个与cache功能类似看起来冗余的persist 点进去一探究竟之后发现cache()是persist()的特例,persist可以指定一个StorageLevel.StorageLevel的列表可以在StorageLevel 伴生单例对象中找到: cache的源码: /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */…
cache和persist都是用于将一个RDD进行缓存的,这样在之后使用的过程中就不需要重新计算了,可以大大节省程序运行时间. cache和persist的区别 基于Spark 1.6.1 的源码,可以看到 /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */ def cache(): this.type = persist() 说明是cache()调用了persist(), 想要知道二者的不同还需要看一下…
通过观察RDD.scala源代码即可知道cache和persist的区别: def persist(newLevel: StorageLevel): this.type = { if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) { throw new UnsupportedOperationException( "Cannot change storage level of an RDD afte…
spark 2.1.1 spark应用中有一些task非常慢,持续10个小时,有一个task日志如下: 2019-01-24 21:38:56,024 [dispatcher-event-loop-22] INFO org.apache.spark.executor.CoarseGrainedExecutorBackend - Got assigned task 40312019-01-24 21:38:56,024 [Executor task launch worker for task 4…
区别: 1.map是对rdd中每一个元素进行操作 2.mapPartitions是对rdd中每个partition的迭代器进行操作 mapPartitions优点: 1.若是普通map,比如一个partition中有一万条数据,那么function要执行一万次,而使用mapPartions,一个task只执行一次function,function一次接收所有数据,只执行一次,性能高 2.若在map中需要频繁创建额外对象(如将rdd的数据通过jdbc写入数据库,map需要为每条数据创建一个链接,m…
1.groupByKey的源代码 2.groupByKey的使用缺点 不使用groupByKey的主要原因:在大规模的数据下,数据分布不均匀的情况下,可能导致OOM 3.reduceByKey的源代码 4.使用reduceByKey的youdian 使用reduceByKey函数的主要原因是:reduceByKey中存在combiner…
为了增强容错性和高可用,避免上游RDD被重复计算的大量时间开销,Spark RDD设计了包含多种存储级别的缓存和持久化机制,主要有三个概念:Cache.Persist.Checkout. 1.存储级别介绍(StorageLevel) 存储级别以一个枚举类StorageLevel定义,分为以下12种: StorageLevel枚举类存储级别 存储级别 使用空间 CPU时间 是否在内存中 是否在磁盘上 备注 NONE 否 否 否 否 不使用任何存储 DISK_ONLY 低 高 否 是 只存在磁盘上…
1. 广播变量  1.1 补充知识(来源:https://blog.csdn.net/huashetianzu/article/details/7821674) 之所以存在reduce side join,是因为在map阶段不能获取所有需要的join字段,即:同一个key对应的字段可能位于不同map中.Reduce side join是非常低效的,因为shuffle阶段要进行大量的数据传输.Map side join是针对以下场景进行的优化:两个待连接表中,有一个表非常大,而另一个表非常小,以至…
cache只有一个默认的缓存级别MEMORY_ONLY ,而persist可以根据StorageLevel设置其它的缓存级别. cache以及persist都不是action. 被重复使用的(但是)不能太大的RDD需要cache cache 只使用 memory,checkpoint写磁盘 rdd.persist(StorageLevel.DISK_ONLY) 与 checkpoint 的区别: persist将 RDD 的 partition 持久化到磁盘,但该 partition 由 blo…
在spark中,map与mapPartitions两个函数都是比较常用,这里使用代码来解释一下两者区别 import org.apache.spark.{SparkConf, SparkContext} import scala.collection.mutable.ArrayBuffer object MapAndPartitions { def main(args: Array[String]): Unit = { val sc = new SparkContext(new SparkCon…