题目:http://codeforces.com/contest/285/problem/E 是2018.7.31的一场考试的题,当时没做出来. 题解:http://www.cnblogs.com/yanshannan/p/9410986.html 因为那个值对于 i 位置来说只和 i 位置放了 i-1 或 i+1 有关,所以状态里记录一下 i 和 i+1 有没有已经放过,再加上 i-1 的对于 i-1 和 i 的状态,就能转移了. 枚举这一位:放 i-1 /放 i+1/先空下.先空下对那个值无…
[CF285E]Positions in Permutations(动态规划,容斥) 题面 CF 洛谷 题解 首先发现恰好很不好算,所以转成至少,这样子只需要确定完一部分数之后剩下随意补. 然后套一个二项式反演进行容斥就可以得到答案了. 考虑怎么算至少\(m\)个的贡献, 设\(f[i][j][S]\)表示当前填到了位置\(i\),一个有\(j\)个贡献,\(i\)和\(i+1\)的使用情况是\(S\)的方案数,每次枚举一下这个位置是填\(i+1\)还是\(i-1\)还是其他就可以进行转移了.…
转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Iahub and Permutations Iahub is so happy about inventing bubble sort graphs that he's staying all day long at the office and writing permutations. Iahubina is angry that she is no more import…
Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive integers, each of them doesn't exceed n. We'll denote the i-th element of permutation p as pi. We'll call number n the size or the length of permutation…
\(>Codeforces \space 285 E. Positions in Permutations<\) 题目大意 : 定义一个长度为 \(n\) 的排列中第 \(i\) 个元素是好的,当且仅当 \(i\)在排列中的位置 \(p_i\) 满足 \(|i - p_i| = 1\), 给出 \(n, k\) 求长度为 \(n\) 的排列中恰好有 \(k\) 个元素是好的方案数 $1 \leq n \leq 1000, 0 \leq k \leq n $ 解题思路 : 观察发现,直接求出答案…
题意:求所有长度为\(n\)的排列\(p\)中,有多少个满足:对于所有\(i \,(1 \leq i \leq n)\),其中恰好有\(k\)个满足\(|p_i - i| = 1\).答案对\(10^9 + 7\)取模. \(n \leq 10^3\) 首先,让我们考虑这个类似反演的结论: 对于\(F(n)\)和\(f(n)\),则满足 \[F(n) = \sum_{k \geq n}{{k}\choose{n}}f(k) \iff f(n) = \sum_{k \geq n}(-1)^{k-n…
[CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列,定义两个排列\(p,q\)之间的距离为每次选择\(p\)中两个元素交换,使其变成\(q\)的最小次数. 求距离恰好为\([0,n-1]\)的填数方案数. 加强的题目在\(BZOJ\)上有,戳这里. 题解 看到这道题目就觉得无比熟悉.回头翻了翻发现果然是省队集训的时候的题目... 果然都是原题啊..…
Codeforces 题目传送门 & 洛谷题目传送门 upd on 2021.10.20:修了个 typo( 这是一道 *2600 的 D2E,然鹅为啥我没想到呢?wtcl/dk 首先第一步我就没想到/kk,看到"恰好"二字我们可以想到一个东西叫做二项式反演(qwq 这个套路在刷多项式题时经常见到,可咋换个场景就想不到了呢?显然是我多项式白学了/doge).我们设 \(f_k\) 表示恰好 \(k\) 个完美数的排列个数,\(g_k\) 表示钦定 \(k\) 个位置满足 \(|…
题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k. Solution 直接dp会有很大的后效性. 所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1][0/1]表示前i个数,填了j个数,当前位置有没有被选,下一位有没有被选,这样做的话,转移会比较简单. 那么除去这j个数,剩下的数随便填,乘上全排列就好了. 但这样会多算. 然后这种问题有一个容斥模型,直接套上就好了. #include<iostream> #include<cstdio&g…
思路 dp+二项式反演的神题 就是dp部分非常麻烦(好吧是我傻了 考虑先钦定m个满足条件的位置,这m个\(x_i\),只能放\(x_i-1\)或\(x_i+1\),然后其他的随便放(得出至少m个的方案数,然后上一发二项式反演即可 设dp[i][j][0/1][0/1]表示前i个,有j个满足条件的位置,第i个和第i+1个是否被放在其他位置, 然后有, dp[i][j][k][0]+=dp[i-1][j][p][k](不管第i个位置,第i个位置没有被选中) dp[i][j+1][k][0]+=dp[…