[BZOJ4487][JSOI2015]染色问题(容斥) 题面 BZOJ 题解 看起来是一个比较显然的题目? 首先枚举一下至少有多少种颜色没有被用到过,然后考虑用至多\(k\)种颜色染色的方案数. 那么显然没有颜色的限制,只有行列的限制. 那么我们钦定行必须被染色,这样子每一行的染色方案之和列数和颜色数相关,那么再容斥一下有多少列没有被染色就行了. #include<iostream> #include<cstdio> using namespace std; #define MA…
点此看题面 大致题意: 有一个\(n*m\)的矩形,先让你用\(C\)种颜色给它染色.每个格子可染色可不染色,但要求每行每列至少有一个小方格被染色,且每种颜色至少出现一次.求方案数. 高维容斥 显然题目中给你\(3\)个条件,而我们要一起容斥,所以就是高维容斥... 通过高维容斥,我们可以得到这样一个式子: \[\sum_{i=0}^n(-1)^{n-i}C_n^i\sum_{j=0}^m(-1)^{m-j}C_m^j\sum_{k=0}^c(-1)^{c-k}C_c^k(k+1)^{ij}\]…
BZOJ4487 [Jsoi2015]染色问题 题目描述 传送门 题目分析 发现三个限制,大力容斥推出式子是\(\sum_{i=0}^{N}\sum_{j=0}^{M}\sum_{k=0}^{C}(-1)^{N+M+C-i-j-k}*(k+1)^{i*j}*\binom{N}{i}*\binom{M}{j}*\binom{C}{k}\) 由于数据范围较小,支持\(O(nmC)\)的做法.直接暴力预处理幂和组合数,暴力计算即可. 是代码呢 #include <bits/stdc++.h> usi…
4487: [Jsoi2015]染色问题 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 211  Solved: 127[Submit][Status][Discuss] Description 棋盘是一个n×m的矩形,分成n行m列共n*m个小方格.现在萌萌和南南有C种不同颜色的颜料,他们希望把棋盘用这些颜料染色,并满足以下规定:1.  棋盘的每一个小方格既可以染色(染成C种颜色中的一种) ,也可以不染色.2.  棋盘的每一行至少有一个小方格被染…
染色 bzoj-4487 Jsoi-2015 题目大意:给你一个n*m的方格图,在格子上染色.有c中颜色可以选择,也可以选择不染.求满足条件的方案数,使得:每一行每一列都至少有一个格子被染色,且所有的颜色必须都出现过. 注释:$1\le n,m,k\le 400$. 想法:显然直接求每个求,我们不难想到容斥原理. 我们用容斥来求出i行不染,j列不染,还剩(n-i)*(m-j)个格子这样我么根据那个容斥原理,先不考虑最后的条件:最后再将最后的信息加上. 可以得到式子. $\sum\limits_{…
传送门 题意简述: 用ccc中颜色给一个n∗mn*mn∗m的方格染色,每个格子可涂可不涂,问最后每行每列都涂过色且ccc中颜色都出现过的方案数. 思路: 令fi,j,kf_{i,j,k}fi,j,k​表示至少有iii行没涂色,至少有jjj列没涂色,至少有ccc种颜色没涂色的方案数. 于是fi,j,k=CniCmjCck(c−k+1)(n−i)(m−j)f_{i,j,k}=C_n^iC_m^jC_c^k(c-k+1)^{(n-i)(m-j)}fi,j,k​=Cni​Cmj​Cck​(c−k+1)(…
逐个去除限制.第四个限制显然可以容斥,即染恰好c种颜色的方案数=染至多c种颜色的方案数-染至多c-1种颜色的方案数+染至多c-2种颜色的方案数…… 然后是限制二.同样可以容斥,即恰好选n行的方案数=至多选n行的方案数-至多选n-1行的方案数+至多选n-2行的方案数…… 限制三同理.即容斥套容斥套容斥.复杂度O(nmc). 注意到容斥式子和二项式定理有千丝万缕的联系,用二项式定理去掉一维变成O(nclogm). #include<iostream> #include<cstdio>…
题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只关心序列的 \(N\) 个位置中出现次数恰好为 \(S\) 的颜色种数, 如果恰 好出现了 \(S\) 次的颜色有 \(K\) 种, 则小 C 会产生 \(W_k\) 的愉悦度. 小 C 希望知道对于所有可能的染色方案, 他能获得的愉悦度的和对 1004535809 取模的结果是多少. 输入格式 从…
一开始写了7个DP方程,然后意识到这种DP应该都会有一个通式. 三个条件:有色行数为n,有色列数为m,颜色数p,三维容斥原理仍然成立. 于是就是求:$\sum_{i=0}^{n}\sum_{j=0}^{m}\sum_{k=0}^{p}(-1)^{n+m+p-i-j-k}\times C_n^i\times C_m^j\times C_p^k\times (k+1)^{ij}$ 复杂度$O(n^3)$ 可以根据二项式定理优化: https://blog.csdn.net/werkeytom_ftd…
传送门 那么除了D1T3,PKUWC2018就更完了(斗地主这种全场0分的题怎么会做啊) 发现我们要求的是所有点中到达时间的最大值的期望,\(n\)又很小,考虑min-max容斥 那么我们要求从\(x\)走到第一个属于某个子集\(S\)的节点的步数期望,这是一个经典的树上高斯消元问题. 将树设为以\(x\)为根,设\(f_{i , S}\)为从第\(i\)个点随机游走到达点集\(S\)任意一个点停止,行走步数的期望,转移: \(1.i \in S: f_{i , S}=0\) \(2.i \no…