利用sklearn的Pipeline简化建模过程】的更多相关文章

很多框架都会提供一种Pipeline的机制,通过封装一系列操作的流程,调用时按计划执行即可.比如netty中有ChannelPipeline,TensorFlow的计算图也是如此. 下面简要介绍sklearn中pipeline的使用: from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer from…
Chapter1_housing_price_predict .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .ta…
.caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { background-color: #fff !important; } .table-bordered th, .table-bordere…
Ice笔记-利用Ice::Application类简化Ice应用 作者:ydogg,转载请申明. 在编写Ice相关应用时,无论是Client还是Server端,都必须进行一些必要的动作,如:Ice通信器初始化.异常捕获,以及应用终止后的销毁.鉴于每个应用都需要,Ice运行时库提供了Ice::Application类来解放用户,避免重复劳动,消除繁琐的初始化和销毁细节.Ice::Application虽然实用,但总体来说是个比较简单的类,主要提供了Ice通信器初始化和信号捕获处理两大功能.下面将从…
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构即:Tensor和Dataset: 这里咱们开始介绍TensorFlow的建模过程以及验证模型的一些简单方法.其实无论是sklearn还是TensorFlow,他们的模型建立过程都是相似的,都是经历columns类型声明,模型定义,数据训练,validation等等几个步骤.前面的几节内容我已经简单…
一,引言 Azure Pipeline 管道是一个自动化过程:但是往往我们由于某种原因,需要在多个阶段之前获得批准之后再继续下一步流程,所以我们可以向Azure Pipeline 管道添加审批!批准流程可帮助我们进一步控制自己的管道:我们可以控制管道内特定阶段的 Step 开始,通过审批,并决定 Azure Pipeline 管道何时完成. 而至于为什么要添加审批流程,是因为基础设施资源的部署是需要进行评估,慎重操作.有了审批,可以查看前一阶段以确认配置代码是否正确. -------------…
利用sklearn计算文本相似性,并将文本之间的相似度矩阵保存到文件当中.这里提取文本TF-IDF特征值进行文本的相似性计算. #!/usr/bin/python # -*- coding: utf-8 -*- import numpy import os import sys from sklearn import feature_extraction from sklearn.feature_extraction.text import TfidfTransformer from sklea…
基于上面的一篇博客k-means利用sklearn实现k-means #!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans # In[4]: # 加载数据 dataset = [] for line in open("data_kmeans.csv"): x, y = line…
一,引言 最近项目上让开始学习AWS,作为一名合格的开发人员,当然也是学会利用Azure DevOps Pipeline 将应用程序部署到 AWS ECS(完全托管的容器编排服务).我们要学会将应用程序部署到多云的环境上,技多不压身!!!! 首先肯定的是,我们必须先依赖Azure DevOps 进行应用程序构建 docker images .并且将 dockre image 推送到 AWS ECR(完全托管的容器注册表) 二,正文 1,创建AWS ECR 容器注册表 登陆到AWS 控制台后,搜索…
一,引言 上一篇文章记录了利用 Azure DevOps 跨云进行构建 Docker images,并且将构建好的 Docker Images 推送到 AWS 的 ECR 中.今天我们继续讲解 Azure DevOps 的 Pipeline,利用 Release Pipeline 实现 Terraform for AWS Infrastructure Resources 自动部署,我们的目标是将 images 部署到 AWS ECS 上. -------------------- 我是分割线 -…