SIFT提取特征】的更多相关文章

SIFT特征提取: 角点检测: Morvavec角点检测算子:基于灰度方差的角点检测方法,该算子计算图像中某个像素点沿水平.垂直方向上的灰度差异,以确定角点位置 Harris角点检测算子:不止考察水平,垂直4个方向上的灰度差异,而是考察了所有方向上的灰度差异,并且具有旋转不变性和部分放射变换的稳定性. Shi-Tomasi角点检测算子:通过考察自相关矩阵M的两个特征值中的较小者来确定角点,大部分情况下,有比Harris更好的检测效果. FAST算子:通过考察像素点与其邻域内16个像素点的差异来确…
Sift之前的江湖 在Sift横空出世之前,特征点检测与匹配江湖上占据霸主地位的是角点检测家族.先来探究一下角点家族不为人知的恩怨情仇. 角点家族的族长是Moravec在1977年提出的Moravec角点检测算子,它是一种基于灰度方差的角点检测方法,该算子计算图像中某个像素点沿水平.垂直方向上的灰度差异,以确定角点位置,Moravec是第一个角点检测算法,也是角点家族的开山鼻祖. 角点家族的九袋长老是Chris Harris & Mike Stephens在1988年提出的Harris角点检测算…
SIFT算法是一种基于尺度空间的算法.利用SIFT提取出的特征点对旋转.尺度变化.亮度变化具有不变性,对视角变化.仿射变换.噪声也有一定的稳定性. SIFT实现特征的匹配主要包括四个步骤: 提取特征点 计算关特征点的描述子 利用描述子的相似程度对特征点进行匹配 消除误匹配点 1. 提取特征点 构建尺度空间:模拟图像的多尺度特征.经证实,唯一可能的尺度空间核是高斯函数.用L(x,y,σ)表示一幅图像的尺度空间,由可变尺度的高斯函数G(x,y,σ)和图像卷积产生,即,其中,(x,y)表示图像上的点,…
模式识别课程的一次作业.其目标是对UCI的手写数字数据集进行识别,样本数量大约是1600个.图片大小为16x16.要求必须使用SVM作为二分类的分类器. 本文重点是如何使用卷积神经网络(CNN)来提取手写数字图片特征,主要想看如何提取特征的请直接看源代码部分的94行左右,只要对tensorflow有一点了解就可以看懂.在最后会有完整的源代码.处理后数据的分享链接.转载请保留原文链接,谢谢. UCI手写数字的数据集 源数据下载:http://oddmqitza.bkt.clouddn.com/ar…
我们要知道三维空间中的点在图像中的位置,就需要提取特征与特征匹配了. 1.检测特征点 2.计算描述子 3.特征匹配 1.检测特征点 我们用到的检测特征点的方法是FAST算法,最大的特点就是快! 算法原理:遍历图像,找到所有的角点.我们就拿一个角点举例,例如只拿到一个角点p,设其像素灰度值为I,取这个角点以三为半径的圆上的所有像素点,能取到16个,然后设定一个阈值t,如果连续n个像素点的灰度值都大于I+t或者都小于I-t.我们则认为其为特征点.接着计算方向:特征点与重心的角度. 2.计算描述子 描…
1. 多值无序类数据的特征提取: 多值无序类问题(One-hot 编码)把“耐克”编码为[0,1,0],其中“1”代表了“耐克”的中 间位置,而且是唯一标识.同理我们可以把“中国”标识为[1,0],把“蓝色”标识为[0,1]. 然后把所有的数据编码拼接起来,[“耐克”,“中国”,“蓝色”]的最终编码结果就变为了 [0,1,0,1,0,0,1],这一组数据虽然很稀疏,但是可以带到算法中进行计算 无序类数据的特征提取:One-hot 编码解决多值无序类数据的特征提取问题. 2.文本提取特征:   由…
https://www.zhihu.com/question/23371175 我需要把一张照片和训练集中的图片进行匹配.我把一张照片提取特征值并建立kd树,然后把训练集的图片依次读进来,然后把图片的特征点依次放进kd树里面找最近的点,第一个问题就是这2个点的距离,方向之比,长度之比在什么范围内算是匹配的?第二个问题是匹配的特征点与总共的特征点之比达到什么范围就可以认为2幅图片是匹配的?第三个问题是我们是需要找到一幅匹配的图片就结束还是遍历所有图片以后找到最匹配的图片再结束? 关注者 180  …
import cv2 import numpy as np def drawMatchesKnn_cv2(img1_gray,kp1,img2_gray,kp2,goodMatch): h1, w1 = img1_gray.shape[:2] h2, w2 = img2_gray.shape[:2] vis = np.zeros((max(h1, h2), w1 + w2, 3), np.uint8) vis[:h1, :w1] = img1_gray vis[:h2, w1:w1 + w2]…
目录 数据的图示 不同类型的基于图的特征 节点属性 局部结构特征 节点嵌入 DeepWalk简介 在Python中实施DeepWalk以查找相似的Wikipedia页面 数据的图示 当你想到"网络"时,会想到什么?通常是诸如社交网络,互联网,已连接的IoT设备,铁路网络或电信网络之类的事物.在图论中,这些网络称为图. 网络是互连节点的集合.节点表示实体,它们之间的连接是某种关系. 例如,我们可以用图的形式表示一组社交媒体帐户: 节点是用户的数字档案,连接表示他们之间的关系,例如谁跟随谁…
shingling算法用于计算两个文档的相似度,例如,用于网页去重.维基百科对w-shingling的定义如下: In natural language processing a w-shingling is a set of unique "shingles"—contiguous subsequences of tokens in a document —that can be used to gauge the similarity of two documents. The w…