Spark之RDD依赖关系及DAG逻辑视图】的更多相关文章

RDD依赖关系为成两种:窄依赖(Narrow Dependency).宽依赖(Shuffle Dependency).窄依赖表示每个父RDD中的Partition最多被子RDD的一个Partition所使用:宽依赖表示一个父RDD的Partition都会被多个子RDD的Partition所使用. 一.窄依赖解析 RDD的窄依赖(Narrow Dependency)是RDD中最常见的依赖关系,用来表示每一个父RDD中的Partition最多被子RDD的一个Partition所使用,如下图所示,父R…
RDD:弹性分布式数据集, 是分布式内存的一个抽象概念 RDD:1.一个分区的集合, 2.是计算每个分区的函数 ,    3.RDD之间有依赖关系 4.一个对于key-value的RDD的Partitioner 5.一个存储存取每个Partition的优先位置的列表 RDD算子: Transformations:不会立即执行,只是记录这些操作 Actions:计算只有在action被提交的时候才被触发. RDD依赖关系: 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Part…
scala> var rdd1 = sc.textFile("./words.txt") rdd1: org.apache.spark.rdd.RDD[String] = ./words.txt MapPartitionsRDD[16] at textFile at <console>:24 scala> val rdd2 = rdd1.flatMap(_.split(" ")) rdd2: org.apache.spark.rdd.RDD[…
本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Transformation操作都会生成一个新的RDD,所以RDD之间就会形成类似流水线的前后依赖关系:在spark中,RDD之间存在两种类型的依赖关系:窄依赖(Narrow Dependency)和宽依赖(Wide Dependency 或者是 Narrow Dependency):如图1所示显示了RD…
转载自:http://www.tuicool.com/articles/7VNfyif 王联辉,曾在腾讯,Intel 等公司从事大数据相关的工作.2013 年 - 2016 年先后负责腾讯 Yarn 集群和 Spark 平台的运营与研发.曾负责 Intel Hadoop 发行版的 Hive 及 HBase 版本研发.参与过百度用户行为数据仓库的建设和开发,以及淘宝数据魔方和淘宝指数的数据开发工作.给 Spark 社区贡献了 25+ 个 patch,接受的重要特性有 python on yarn-…
Spark学习之路 (三)Spark之RDD   https://www.cnblogs.com/qingyunzong/p/8899715.html 目录 一.RDD的概述 1.1 什么是RDD? 1.2 RDD的属性 1.3 WordCount粗图解RDD 二.RDD的创建方式 2.1 通过读取文件生成的 2.2 通过并行化的方式创建RDD 2.3 其他方式 三.RDD编程API 3.1 Transformation 3.2 Action 3.3 Spark WordCount代码编写 3.…
一.RDD的概述 1.1 什么是RDD? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的集合.RDD具有数据流模型的特点:自动容错.位置感知性调度和可伸缩性.RDD允许用户在执行多个查询时显式地将工作集缓存在内存中,后续的查询能够重用工作集,这极大地提升了查询速度. 1.2 RDD的属性 (1)一组分片(Partition),即数据集的基本组成单位.对于RDD来说,每个分片…
前言 Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过程划分stage,暴力的理解就是stage的划分是按照有没有涉及到shuffle来划分的,没涉及的shuffle的都划分在一个stage里面,这种划分依据就是RDD之间的依赖关系.针对不同的转换函数,RDD之间的依赖关系分类窄依赖(narrow dependency)和宽依赖(wide dependency, 也称 shuffle dependency). 定义 窄依赖是指父RDD的每个分区只被子RDD的一个分区所…
摘要:RDD是Spark中极为重要的数据抽象,这里总结RDD的概念,基本操作Transformation(转换)与Action,RDDs的特性,KeyValue对RDDs的Transformation(转换). 1.RDDs是什么 Resilient distributed datasets(弹性分布式数据集) .RDDs并行的分布在整个集群中,是Spark分发数据和计算的基础抽象类,一个RDD是一个不可改变的分布式集合对象,Spark中,所有的计算都是通过RDDs的创建,转换操作完成的,一个R…
RDD是分布式内存的一个抽象概念,是一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,能横跨集群所有节点并行计算,是一种基于工作集的应用抽象. RDD底层存储原理:其数据分布存储于多台机器上,事实上,每个RDD的数据都以Block的形式存储于多台机器上,每个Executor会启动一个BlockManagerSlave,并管理一部分Block:而Block的元数据由Driver节点上的BlockManagerMaster保存,BlockManagerSlave生成Block后向Block…