CPU与GPU性能的比较报告】的更多相关文章

运行时间分析 不同的模型在cpu和gpu下的时间差异较大,一般来说gpu会比cpu快5-20倍.我们选用了最常用的inception v3的分类模型,输入图片尺寸为:3x299x299. GPU 在一块P100GPU(显存16276MiB),性能如下: 由上图可见,随着进程数目的增大耗时会线性增加. 所以:如果服务中在同个卡上多开进程只是服务连接/下载图片的并发实现了并发提速(neuron框架中连接建立.下载图片.算法处理是并发独立的,可近似认为互不影响):算法的吞吐量基本不变.而且从RT角度考…
CPU VS GPU 关于绘图和动画有两种处理的方式:CPU(中央处理器)和GPU(图形处理器).在现代iOS设备中,都有可以运行不同软件的可编程芯片,但是由于历史原因,我们可以说CPU所做的工作都在软件层面,而GPU在硬件层面. 总的来说,我们可以用软件(使用CPU)做任何事情,但是对于图像处理,通常用硬件会更快,因为GPU使用图像对高度并行浮点运算做了优化.由于某些原因,我们想尽可能把屏幕渲染的工作交给硬件去处理.问题在于GPU并没有无限制处理性能,而且一旦资源用完的话,性能就会开始下降了(…
计算20000次10000点的fft,分别使用CPU和GPU,得 the running time of cpu is : 2.3696s the running time of gpu is : 0.3425s 相同的参数matlab处理的时间为 1.2865s ,理论上gpu最快,cpu次之,matlab最慢,得到的结果不对 处理的环境是(CPU i7 4790K,gpu GTX1080, matlab 2015a,内存1666MHZ 16G, PCI E M.2 固态硬盘(读1.2GB/s…
  从思路上说,GPU相当于火车,一个车头带几十节车厢,一下子把成千上万吨货全给你拉目的地:CPU相当于汽车,拉货旅游样样能干.因此,如果单纯比运力,一列火车比得过成百上千辆汽车:但如果几百人有几百个目的地,你再让几十节车厢跑几百趟,把他们一个个送达……这显然就不合适了. GPGPU不过相当于铺设了更多铁路线,使得火车也可以开到过去只有汽车可以开到的地方而已.再怎么优化,火车也是不可能优化成汽车的:成本太高(每节车厢甚至每个座位都自带发动机驾驶室驾驶员,这得是多大的浪费).效率太低(当只有一人时…
导读: CPU和GPU之所以大不相同,是由于其设计目标的不同,它们分别针对了两种不同的应用场景.CPU需要很强的通用性来处理各种不同的数据类型,而GPU面对的则是类型高度统一的.相互无依赖的大规模数据和不需要被打断的纯净的计算环境. “为什么现在更多需要用的是 GPU 而不是 CPU,比如挖矿甚至破解密码? ” 以下是比较准确靠谱的回答: 1.现在更多被需要的依然是CPU,只是GPU在大规模并发计算中体现出其一技之长所以应用范围逐渐变得广泛,并成为近些年的热点话题之一. 为什么二者会有如此的不同…
设备 GPU CPU 每秒像素填充率 每秒三角形生成 内存 iPhone4 PowerVR SGX 535 ARM Cortex-A8 800M     512M iPod touch 4 PowerVR SGX 535 ARM Cortex-A8 800M     256M iPhone4S PowerVR SGX543MP2 ARM Cortex-A9 800M     512M iPad2 PowerVR SGX543MP2 ARM Cortex-A9 1G 2G 67M 512M iPh…
mongodb3.0 性能測试报告 一 mongodb3.0 性能測试报告 二 mongodb3.0 性能測试报告 三 測试环境: 服务器:X86 pcserver   共6台 cpu:  单颗8核 内存:64G 磁盘: raid 10 操作系统 :centos 6.5 mongodb:3.0 java驱动:2.13.0 jdk:1.6 网络:千兆以太网 測试一: 单台monodb服务.一台同配置server作为压力server.数据量不超过内存大小. mongodb配置例如以下: fork =…
个人认为CPU和GPU各有自己的适应领域.CPU(Central Processing Unit)计算核心较少,通常是双核.四核.八核,但是拥有大量的共享缓存.预测.乱序执行等优化,可以做逻辑非常复杂的计算任务.这一点就当前的GPU来说,仍然难以做到.会牺牲大量的性能.造成大量的能耗开销,而且增加了程序员开发GPU程序的难度. GPU(Graphice Processing Unit),天生拥有大量的处理单元,但是代价是较少的控制单元,就如同它的名字一样,适合图形图像相关的计算,图形图像中每一个…
人工智能包括三个要素:算法,计算和数据.人工智能算法目前最主流的是深度学习.计算所对应的硬件平台有:CPU.GPU.FPGA.ASIC.由于移动互联网的到来,用户每天产生大量的数据被入口应用收集:搜索.通讯.我们的QQ.微信业务,用户每天产生的图片数量都是数亿级别,如果我们把这些用户产生的数据看成矿藏的话,计算所对应的硬件平台看成挖掘机,挖掘机的挖掘效率就是各个计算硬件平台对比的标准. 最初深度学习算法的主要计算平台是 CPU,因为 CPU 通用性好,硬件框架已经很成熟,对于程序员来说非常友好.…
Intel 2018架构日详解:新CPU&新GPU齐公布 牙膏时代有望明年结束 北京时间12月12日晚,Intel在圣克拉拉举办了架构日活动.在五个小时的演讲中,Intel揭开了2021年CPU架构路线图.下一代核心显卡.图形业务的未来.全新3D封装技术,甚至部分2019年处理器新架构的面纱. 访问购买页面: 英特尔旗舰店 姗姗来迟的消费级CPU路线图 近一段时间以来,业界一直非常期待看到Intel未来的架构路线图,但自Skylake以来却一直处于犹抱琵琶半遮面的状态.最近几个月Intel简单公…