一. 已知的问题和不足二.解决思路三.代码3.1 读取config文件内容3.2 封装SolrServer的获取方式3.3 编写提交数据到Solr的代码3.4 拦截HBase的Put和Delete操作信息四. 使用 一. 已知的问题和不足 在上一个版本中,实现了使用HBase的协处理器将HBase的二级索引同步到Solr中,但是仍旧有几个缺陷: 写入Solr的Collection是写死在代码里面,且是唯一的.如果我们有一张表的数据希望将不同的字段同步到Solr中该如何做呢? 目前所有配置相关信息…
一. 背景二. 什么是HBase的协处理器三. HBase协处理器同步数据到Solr四. 添加协处理器五. 测试六. 协处理器动态加载 一. 背景 在实际生产中,HBase往往不能满足多维度分析,我们能想到的办法就是通过创建HBase数据的二级索引来快速获取rowkey,从而得到想要的数据.目前比较流行的二级索引解决方案有Lily HBase Indexer,Phoenix自带的二级索引,华为Indexer,以及360的二级索引方案.上面的目前使用比较广泛的应该是Lily HBase Index…
一.协处理器—Coprocessor 1. 起源Hbase 作为列族数据库最经常被人诟病的特性包括:无法轻易建立“二级索引”,难以执 行求和.计数.排序等操作.比如,在旧版本的(<0.92)Hbase 中,统计数据表的总行数,需 要使用 Counter 方法,执行一次 MapReduce Job 才能得到.虽然 HBase 在数据存储层中集成了 MapReduce,能够有效用于数据表的分布式计算.然而在很多情况下,做一些简单的相 加或者聚合计算的时候, 如果直接将计算过程放置在 server 端…
HBase在0.92之后引入了coprocessors,提供了一系列的钩子,让我们能够轻易实现访问控制和二级索引的特性.下面简单介绍下两种coprocessors,第一种是Observers,它实际类似于触发器,第二种是Endpoint,它类似与存储过程.由于这里只用到了Observers,所以只介绍Observers,想要更详细的介绍请查阅(https://blogs.apache.org/hbase/entry/coprocessor_introduction).observers分为三种:…
一.问题描述二.分析步骤2.1 查看日志2.2 修改Solr的硬提交2.3 寻求StackOverFlow帮助2.4 修改了read-row="never"后,丢失部分字段2.5 修改代码2.6 重新打包分发三.结果四.思考 一.问题描述 部分业务需要使用HBase的数据进行多维度分析,我们采用了将部分数据同步到Solr,通过Solr进行多维度查询返回对应的Rowkey,再从HBase批量获取数据.因此我们使用了一个比较成熟的方案Lily HBase Indexer来同步二级索引到So…
环境描述: 操作系统版本:CentOS release 6.5 (Final) 内核版本:2.6.32-431.el6.x86_64 phoenix版本:phoenix-4.10.0 hbase版本:hbase-1.2.6 hbase节点分布:1个HMaster,2个RegionServer 文档目的: 通过在phoenix客户端连接hbase数据库,在phoenix中创建二级索引. 配置过程: 1.登录到RegionSever节点,修改hbase-site.xml配置文件,加入如下配置 <pr…
概述 在Hbase中,表的RowKey 按照字典排序, Region按照RowKey设置split point进行shard,通过这种方式实现的全局.分布式索引. 成为了其成功的最大的砝码. 然而单一的通过RowKey检索数据的方式,不再满足更多的需求,查询成为Hbase的瓶颈,人们更加希望像Sql一样快速检索数据,可是,Hbase之前定位的是大表的存储,要进行这样的查询,往往是要通过类似Hive.Pig等系统进行全表的MapReduce计算,这种方式既浪费了机器的计算资源,又因高延迟使得应用黯…
我们会经常谈及二级索引,这是对全表数据进行另外一种方式的组织存储,是针对table级别的.如果要为HBase上的表实现一个强一致性的二级索引,那么就无法逃避分布式事务,而这一直是用户最期待的功能. 而即使只需要保证最终一致性,这个索引也并不好实现,因为你需要额外的表以存储过程数据,需要解决宕机恢复问题等 撇开分布式事务,我们是否可以考虑对索引的要求进行降级,比如把Region看成是全表下的子表,实现一套Region级别的索引,通过功能上的牺牲以换取实现的简易及稳定. 在某些存在用户概念的场景下,…
一.概述 Hbase适用于大表的存储,通过单一的RowKey查询虽然能快速查询,但是对于复杂查询,尤其分页.查询总数等,实现方案浪费计算资源,所以可以针对hbase数据创建二级索引(Hbase Secondary Indexing),供复杂查询使用. Solr是一个高性能,采用Java5开发,基于Lucene的全文搜索服务器.同时对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面,是一款非常优秀的全文搜索引擎.…
使用HBase存储中国好声音数据的案例,业务描述如下: 为了能高效的查询到我们需要的数据,我们在RowKey的设计上下了不少功夫,因为过滤RowKey或者根据RowKey查询数据的效率是最高的,我们的RowKey的设计是:UserID + CreateTime + FileID,那么我们在HBase中的数据格式如下: 每一行数据中包含两个Column:f:c和f:n 我们在查询的时候还是用了SingleColumnValueFilter这个Filter来过滤单个的Column的Value的值,我…
二级索引与索引Join是Online业务系统要求存储引擎提供的基本特性.RDBMS支持得比较好,NOSQL阵营也在摸索着符合自身特点的最佳解决方案. 这篇文章会以HBase做为对象来探讨如何基于Hbase构建二级索引与实现索引join.文末同时会列出目前已知的包括0.19.3版secondary index,?ITHbase, Facebook和官方Coprocessor方案的介绍. 理论目标 在HBase中实现二级索引与索引Join需要考虑三个目标: 1,高性能的范围检索. 2,数据的低冗余(…
转自:http://www.oschina.net/question/12_32573 二级索引与索引Join是Online业务系统要求存储引擎提供的基本特性.RDBMS支持得比较好,NOSQL阵营也在摸索着符合自身特点的最佳解决方案.这篇文章会以HBase做为对象来探讨如何基于Hbase构建二级索引与实现索引join.文末同时会列出目前已知的包括0.19.3版secondary index, ITHbase, Facebook和官方Coprocessor方案的介绍. 理论目标在HBase中实现…
为什么需要Secondary Index 对于Hbase而言,如果想精确地定位到某行记录,唯一的办法是通过rowkey来查询.如果不通过rowkey来查找数据,就必须逐行地比较每一列的值,即全表扫瞄.对于较大的表,全表扫瞄的代价是不可接受的. 但是,很多情况下,需要从多个角度查询数据.例如,在定位某个人的时候,可以通过姓名.身份证号.学籍号等不同的角度来查询,要想把这么多角度的数据都放到rowkey中几乎不可能(业务的灵活性不允许,对rowkey长度的要求也不允许). 所以,需要secondar…
HBase二级索引.读写流程 一.HBse二级索引方案 1.1 基于Coprocessor方案 1.2 Phoenix二级索引特点 1.3 Phoenix 二级索引方案 二.HBase读写流程 2.1 HBase写数据流程 2.2 HBase读数据流程 相关优秀博文案例: 博客园:花未全开*月未圆:HBase的二级索引 博客园:small_k:hbase实践之协处理器Coprocessor 简书:5c7b85ab9023:Hbase使用Coprocessor构建二级索引 CSDN:菜鸟级的IT之…
转自:http://blog.sina.com.cn/s/blog_4a1f59bf01018apd.html 附hbase如何创建二级索引以及创建二级索引实例:http://www.aboutyun.com/thread-8857-1-1.html 华为二级索引(原理):http://my.oschina.net/u/923508/blog/413129 在HBase中,表格的Rowkey按照字典排序,Region按照RowKey设置split point进行shard,通过这种方式实现的全局…
Phoenix创建Hbase二级索引 官方文档 1. 配置Hbase支持Phoenix创建二级索引   1.  添加如下配置到Hbase的Hregionserver节点的hbase-site.xml  <!-- phoenix regionserver 配置参数 --> <property> <name>hbase.regionserver.wal.codec</name> <value>org.apache.hadoop.hbase.regio…
给HBase添加一二级索引,HBase协处理器结合solr 代码如下 package com.hbase.coprocessor; import java.io.IOException; import java.util.ArrayList; import java.util.List; import java.util.Map; import java.util.NavigableMap; import java.util.UUID; import org.apache.hadoop.hbas…
文章来源:http://www.open-open.com/lib/view/open1421501717312.html 实现目的: 由于hbase基于行健有序存储,在查询时使用行健十分高效,然后想要实现关系型数据库那样可以随意组合的多条件查询.查询总记录数.分页等就比较麻烦了.想要实现这样的功能,我们可以采用两种方法: 使用hbase提供的filter, 自己实现二级索引,通过二级索引 查询多符合条件的行健,然后再查询hbase. 第一种方法不多说了,使用起来很方便,但是局限性也很大,hba…
1. 执行流程 2. Solr Cloud实现 http://blog.csdn.net/u011462328/article/details/53008344 3. HBase实现 1) 自定义Observer ① 代码 package cn.bfire.coprocessor; import com.typesafe.config.Config; import com.typesafe.config.ConfigFactory; import org.apache.hadoop.hbase.…
Coprocessor简介 (1)实现目的 HBase无法轻易建立“二级索引”: 执行求和.计数.排序等操作比较困难,必须通过MapReduce/Spark实现,对于简单的统计或聚合计算时,可能会因为网络与IO开销大而带来性能问题. (2)灵感来源          灵感来源于Bigtable的协处理器,包含如下特性: 每个表服务器的任意子表都可以运行代码: 客户端能够直接访问数据表的行,多行读写会自动分片成多个并行的RPC调用. (3)提供接口 RegionObserver:提供客户端的数据操…
  一.为什么要使用Solr做二级索引二.实时查询方案三.部署流程3.1 安装HBase.Solr3.2 增加HBase复制功能3.3创建相应的 SolrCloud 集合3.4 创建 Lily HBase Indexer 配置3.5创建 Morphline 配置文件3.6 注册 Lily HBase Indexer Configuration 和 Lily HBase Indexer Service3.7 同步数据3.8批量同步索引3.9 设置多个indexer四.数据的增删改查4.1 增加4.…
1.环境 Mysql 5.6 Sqoop 1.4.6 Hadoop 2.5.2 HBase 0.98 Elasticsearch 2.3.5 2.安装(略过) 3.HBase Coprocessor实现 HBase Observer import org.apache.commons.logging.Log; import org.apache.commons.logging.LogFactory; import org.apache.hadoop.conf.Configuration; imp…
之前的环境是单独下载的CDH组件包搭建的集群,但是因为hadoop版本过低导致漏洞无法修复,重新搭建高版本集群环境. 新集群环境: 主要组件:hadoop,hbase,zookeeper,Key-Value Store Indexer 1.创建hbase表: hbase shell create 'users', { NAME => 'info', REPLICATION_SCOPE => '1' } 2.使用CDH创建solr集合并修改配置: 1)创建solr实体配置文件本地目录,tsolr…
一:问题由来 1.举例 有A列与B列,分别是年龄与姓名. 如果想通过年龄查询姓名. 正常的检索是通过rowkey进行检索. 根据年龄查询rowkey,然后根据rowkey进行查找姓名. 这样的效率不高,因为要两次scan. 2.建议有一张索引表. 二:HBase的二级索引 1.讲解 rowkey是uid+ts 11111_20161126111111: 这个rowkey方便查询某一uid的某一个时间段内的数据 问题: 查询某一时间段内所有用户的数据:按照时间 索引表 rowkey:ts+uid…
Phoenix是构建在HBase上的一个SQL层,能让我们用标准的JDBC APIs对HBase数据进行增删改查,构建二级索引.当然,开源产品嘛,自然需要注意“避坑”啦,阿丸会把使用方式和最佳实践都告诉你. 1.什么是Phoenix Phoenix完全使用Java编写,将SQL查询转换为一个或多个HBase扫描,并编排执行以生成标准的JDBC结果集.Phoenix主要能做以下这些事情: 将SQL查询编译为HBase扫描scan 确定scan的开始和停止位置 将scan并行执行 将where子句中…
HBase学习(四) 一.HBase的读写流程 画出架构 1.1 HBase读流程 Hbase读取数据的流程:1)是由客户端发起读取数据的请求,首先会与zookeeper建立连接2)从zookeeper中获取一个hbase:meta表位置信息,被哪一个regionserver所管理着     hbase:meta表:hbase的元数据表,在这个表中存储了自定义表相关的元数据,包括表名,表有哪些列簇,表有哪些reguion,每个region存储的位置,每个region被哪个regionserver…
前言:还记得那是2018年的一个夏天,天气特别热,我一边擦汗一边听领导大刀阔斧的讲述自己未来的改革蓝图.会议开完了,核心思想就是:我们要搞一个数据大池子,要把公司能灌的数据都灌入这个大池子,然后让别人用 各种姿势 来捞这些数据.系统从开始打造到上线差不多花了半年多不到一年的时间,线上稳定运行也有一年多的时间.今天想简单做个总结. 一.背景介绍 公司成立差不多十五六年了,老公司了.也正是因为资格老,业务迭代太多了,各个业务线错综复杂,接口调用也密密麻麻.有时候A向B要数据,有时候B向C要接口,有时…
关注公众号:大数据技术派,回复"资料",领取1024G资料. 1 为什么需要二级索引 HBase的一级索引就是rowkey,我们仅仅能通过rowkey进行检索.假设我们相对Hbase里面列族的列列进行一些组合查询,就只能全表扫描了.表如果较大的话,代价是不可接受的,所以要提出二级索引的方案. 二级索引的思想:简单理解就是,根据列族的列的值,查出rowkey,再按照rowkey就能很快从hbase查询出数据,我们需要构建出根据列族的列的值,很快查出rowkey的方案. 2 常见的二级索引…
HBase是一个分布式的.面向列的开源数据库,该技术来源于 Fay Chang 所撰写的Google论文“Bigtable:一个结构化数据的分布式存储系统”.就像Bigtable利用了Google文件系统(File System)所提供的分布式数据存储一样,HBase在Hadoop之上提供了类似于Bigtable的能力.HBase是Apache的Hadoop项目的子项目.HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库.另一个不同的是HBase基于列的而不是基于行的模式.…
Coprocessor方式二级索引 1. Coprocessor提供了一种机制可以让开发者直接在RegionServer上运行自定义代码来管理数据.通常我们使用get或者scan来从Hbase中获取数据,使用Filter过滤掉不需要的部分,最后在获得的数据上执行业务逻辑.但是当数据量非常大的时候,这样的方式就会在网络层面上遇到瓶颈.客户端也需要强大的计算能力和足够大的内存来处理这么多的数据,客户端的压力就会大大增加.但是如果使用Coprocessor,就可以将业务代码封装,并在RegionSer…