yarn的调度器】的更多相关文章

目录 Yarn 容量调度器多队列提交案例 需求 配置多队列的容量调度器 1 修改如下配置 SecureCRT的上传和下载 2 上传到集群并分发 3 重启Yarn或yarn rmadmin -refreshQueues 4 向Hive队列提交任务 提交方式-打jar包的方式 任务优先级 任务优先级的使用 Yarn 容量调度器多队列提交案例 默认只有一个default队列,不能满足生产要求.一般按照业务模块如登录注册.购物车等创建队列. 需求 需求1:default队列占总内存的40%,最大资源容量…
试想一下,你现在所在的公司有一个hadoop的集群.但是A项目组经常做一些定时的BI报表,B项目组则经常使用一些软件做一些临时需求.那么他们肯定会遇到同时提交任务的场景,这个时候到底如何分配资源满足这两个任务呢?是先执行A的任务,再执行B的任务,还是同时跑两个? 如果你存在上述的困惑,可以多了解一些yarn的资源调度器. 在Yarn框架中,调度器是一块很重要的内容.有了合适的调度规则,就可以保证多个应用可以在同一时间有条不紊的工作.最原始的调度规则就是FIFO,即按照用户提交任务的时间来决定哪个…
三种调度器 1.FIFO Scheduler 把应用按提交的顺序排成一个队列,这是一个先进先出队列,在进行资源分配的时候,先给队列中最头上的应用进行分配资源,等最前面的应用需求满足后再给下一个分配,以此类推.不适用于共享集群,大的应用可能会占用所有集群资源,这就导致其它应用被阻塞. 2.Capacity Scheduler http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/CapacityScheduler.ht…
目录 公平调度器案例 需求 配置多队列的公平调度器 1 修改yarn-site.xml文件,加入以下从参数 2 配置fair-scheduler.xml 3 分发配置文件重启yarn 4 测试提交任务 公平调度器案例 公平调度器也有默认队列default 需求 新增两个队列test和ranan(以用户所属组命名). 期望实现以下效果:若用户提交任务时指定队列,则任务提交到指定队列运行:若没有指定队列,test用户提交的任务到root.group.test,ranan提交的任务到 root.gro…
https://tech.meituan.com/2019/08/01/hadoop-yarn-scheduling-performance-optimization-practice.html 文章对性能优化的思路,如果评测性能,找到性能瓶颈,优化,优化效果评估,上线部署给出了很好的教科书式的案例,值得一看!! 背景 YARN作为Hadoop的资源管理系统,负责Hadoop集群上计算资源的管理和作业调度. 美团的YARN以社区2.7.1版本为基础构建分支.目前在YARN上支撑离线业务.实时业务…
摘要:Superior Scheduler是一个专门为Hadoop YARN分布式资源管理系统设计的调度引擎,是针对企业客户融合资源池,多租户的业务诉求而设计的高性能企业级调度器. 本文分享自华为云社区<FusionInsight MRS的自研超级调度器Superior Scheduler原理简介>,作者:一枚核桃. Superior Scheduler是一个专门为Hadoop YARN分布式资源管理系统设计的调度引擎,是针对企业客户融合资源池,多租户的业务诉求而设计的高性能企业级调度器. S…
Superior Scheduler是一个专门为Hadoop YARN分布式资源管理系统设计的调度引擎,是针对企业客户融合资源池,多租户的业务诉求而设计的高性能企业级调度器. Superior Scheduler可实现开源调度器.Fair Scheduler以及Capacity Scheduler的所有功能.另外,相较于开源调度器,Superior Scheduler在企业级多租户调度策略.租户内多用户资源隔离和共享.调度性能.系统资源利用率和支持大集群扩展性方面都做了针对性的增强.设计的目标是…
yarn中一个基本的调度单元是队列. yarn的内置调度器: 1.FIFO先进先出,一个的简单调度器,适合低负载集群.2.Capacity调度器,给不同队列(即用户或用户组)分配一个预期最小容量,在每个队列内部用层次化的FIFO来调度多个应用程序.3.Fair公平调度器,针对不同的应用(也可以为用户或用户组),每个应用属于一个队列,主旨是让每个应用分配的资源大体相当.(当然可以设置权重),若是只有一个应用,那集群所有资源都是他的. 适用情况:共享大集群.队列之间有较大差别. capacity调度…
(1)FIFO Scheduler 将所有的Applications放到队列中,先按照作业的优先级高低.再按照到达时间的先后,为每个app分配资源.如果第一个app需要的资源被满足了,如果还剩下了资源并且满足第二个app需要的资源,那么就为第二个app分配资源,and so on. 优点:简单,不需要配置. 缺点:不适合共享集群.如果有大的app需要很多资源,那么其他app可能会一直等待. 一个例子 上图的示例:有一个很大的job1,它先提交,并且占据了全部的资源.那么job2提交时发现没有资源…
linux基础 为hadoop集群的搭建扫清了障碍,也为内存的管理,文件系统的管理扫清了障碍 接着到Hadoop的阶段,首先做集群的安装,深入到使用这两个核心的组件,分布式文件系统HDFS,解决大量数据怎么存储的问题,第二个就是分布式计算MapReduce.MapReduce的包含Yarn和MapReduce,随着集群规模的扩大,资源的管理必要用一个单独的组件Yarn来管理,程序员只要关注如何来写程序就好了. 然后讲了Zookeeper: 轻量级组件,往大数据集群里导数据的,比如Sqoop和Fl…