目标检测和边界框 在图像分类任务里,我们假设图像里只有一个主体目标,并关注如何识别该目标的类别.然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置.在计算机视觉里,我们将这类任务称为目标检测(object detection)或物体检测. 目标检测在多个领域中被广泛使用.例如,在无人驾驶里,我们需要通过识别拍摄到的视频图像里的车辆.行人.道路和障碍的位置来规划行进线路.机器人也常通过该任务来检测感兴趣的目标.安防领域则需要检测异常目标,如歹徒或者…
[系统安全] 十六.PE文件逆向基础知识(PE解析.PE编辑工具和PE修改) 文章来源:https://masterxsec.github.io/2017/05/02/PE%E6%96%87%E4%BB%B6%E7%BB%93%E6%9E%84/   您可能之前看到过我写的类似文章,为什么还要重复撰写呢?只是想更好地帮助初学者了解病毒逆向分析和系统安全,更加成体系且不破坏之前的系列.因此,我重新开设了这个专栏,准备系统整理和深入学习系统安全.逆向分析和恶意代码检测,"系统安全"系列文章…
在基于深度学习的目标检测算法的综述 那一节中我们提到基于区域提名的目标检测中广泛使用的选择性搜索算法.并且该算法后来被应用到了R-CNN,SPP-Net,Fast R-CNN中.因此我认为还是有研究的必要. 传统的目标检测算法大多数以图像识别为基础.一般可以在图片上使用穷举法或者滑动窗口选出所有物体可能出现的区域框,对这些区域框提取特征并进行使用图像识别分类方法,得到所有分类成功的区域后,通过非极大值抑制输出结果. 在图片上使用穷举法或者滑动窗口选出所有物体可能出现的区域框,就是在原始图片上进行…
Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. 继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度.在Github上提供了源码. 之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题: 训练分多步.通过上一篇博文我们知道R-CNN的训练先…
1. HYWZ-dts音效大师破解https://www.chinapyg.com/thread-135090-1-1.html(出处: 飘云阁(PYG官方论坛) ) 2. HYWZ-LopeEdit破解https://www.chinapyg.com/thread-135091-1-1.html(出处: 飘云阁(PYG官方论坛) ) 3. [第十六轮] PYG5.4第十六期第三题Epic Pen分析过程https://www.chinapyg.com/thread-135150-1-1.htm…
系列文章链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnblogs.com/kongweisi/p/10895055.html (三)目标检测算法之SPPNet https://www.cnblogs.com/kongweisi/p/10899771.html (四)目标检测算法之Fast R-CNN https://www.cnblogs.com/kong…
讲授线性分类器,分类间隔,线性可分的支持向量机原问题与对偶问题,线性不可分的支持向量机原问题与对偶问题,核映射与核函数,多分类问题,libsvm的使用,实际应用 大纲: 多分类问题libsvm简介实验环节实际应用SVM整体思路总结 多分类问题: SVM怎么解决多分类问题,整体上有两种思路,第一种思路是多个二分类器的组合来解决多分类问题,第二种思路是直接优化一个多类的损失函数,就是训练出的就只是一个模型可以解决多分类问题. 第一种思路有两种实现: ①1对剩余方案 假如有N个类,就训练n个分类器,每…
1.问题动机 图1.飞机发动机检测例子 对飞机引擎的例子,如果选取了两个特征x1热量产生度,x2震动强度.并得到如下的图,如果有一个新的引擎来检测其是否正常,x_test,那么此时如果点落在和其他点正常内,那么就显示是正常,不需要进一步的检测,但是如果在右下角绿色的,那么就是异常的,需要进一步地检测. 图1.密度检测 更一般地建立模型,当x_test输入时,若概率<阈值ε,那么就被设置为异常:否则设置为正常.如图来看,中心部分的概率大,四周部分概率小. 图2.异常检测的应用 异常检测最常见的应用…
一.LDA算法 基本思想:LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术. 我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大. 浅显来讲,LDA方法的考虑是,对于一个多类别的分类问题,想要把它们映射到一个低维空间,如一维空间从而达到降维的目的,我们希望映射之后的数据间,两个类别之间“离得越远”,且类别内的数据点之间“离得越近”,这样…
面向对象基础: 在了解面向对象之前,先了解下变成范式: 编程范式是一类典型的编程风格,是一种方法学 编程范式决定了程序员对程序执行的看法 oop中,程序是一系列对象的相互作用 python支持多种编程范式,面向过程,面向对象,面向切面(装饰器部分)等 -------------------------------------------------------------------- -------------------------------------------------------…
Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Session等诸多功能. 基本配置 1.创建Django程序 终端命令:django-admin startproject sitename IDE创建Django程序时,本质上都是自动执行上述命令 上述的sitename是自己定义的项目名称! 其他常用命令: python manage.py runserver 0.0.…
本篇内容 创建程序 程序目录 流程介绍 login实例 一.创建程序 命令行: django-admin startproject sitename. 常用命令: python manage.py runserver # 启动程序 python manage.py startapp appname # 新建一个项目 python manage.py syncdb python manage.py makemigrations # 把数据库类转换为原生SQL语句 python manage.py…
Bootstrap 进度条.在本教程中,你将看到如何使用 Bootstrap 创建加载.重定向或动作状态的进度条. Bootstrap 进度条使用 CSS3 过渡和动画来获得该效果.Internet Explorer 9 及之前的版本和旧版的 Firefox 不支持该特性,Opera 12 不支持动画. 默认的进度条 创建一个基本的进度条的步骤如下: 添加一个带有 class .progress 的 <div>. 接着,在上面的 <div> 内,添加一个带有 class .prog…
Bootstrap 提供的用于定义导航元素的一些选项.它们使用相同的标记和基类 .nav.Bootstrap 也提供了一个用于共享标记和状态的帮助器类.改变修饰的 class,可以在不同的样式间进行切换. 表格导航或标签 创建一个标签式的导航菜单: 以一个带有 class .nav 的无序列表开始. 添加 class .nav-tabs. 下面的实例演示了这点: <!DOCTYPE html> <html> <head> <title>Bootstrap 实…
首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. 我们有一个检测系统,去检测一个肿瘤病人是否为恶性. 那么,对我们的系统来说,有100个样本,5个正样本,95个负样本.假设分布为1,1,1,1,1,0,0,.......(即前5个人为恶性,后95个为良性). 假设我们的系统预测如下1,0,0,1,1,1,0.......,可以看到我们把第二个第三…
系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目标检测算法之R-CNN https://www.cnblogs.com/kongweisi/p/10895055.html (三)目标检测算法之SPPNet https://www.cnblogs.com/kongweisi/p/10899771.html (四)目标检测算法之Fast R-CNN https://www.cnblogs.com/kong…
在一个月前,我就已经介绍了yolo目标检测的原理,后来也把tensorflow实现代码仔细看了一遍.但是由于这个暑假事情比较大,就一直搁浅了下来,趁今天有时间,就把源码解析一下.关于yolo目标检测的原理请参考前面一篇文章:第三十五节,目标检测之YOLO算法详解. 一 准备工作 在讲解源码之前,我们需要做一些准备工作: 下载源码,本文所使用的yolo源码来源于网址:https://github.com/hizhangp/yolo_tensorflow 下载训练所使用的数据集,我们仍然使用以VOC…
一.概述 本篇文章介绍通过YOLO模型进行目标识别的应用,原始代码来源于:https://github.com/dotnet/machinelearning-samples 实现的功能是输入一张图片,对图片中的目标进行识别,输出结果在图片中通过红色框线标记出来.如下: YOLO简介 YOLO(You Only Look Once)是一种最先进的实时目标检测系统.官方网站:https://pjreddie.com/darknet/yolo/ 本文采用的是TinyYolo2模型,可以识别的目标类型包…
ng机器学习视频笔记(十六) --从图像处理谈机器学习项目流程 (转载请附上本文链接--linhxx) 一.概述 这里简单讨论图像处理的机器学习过程,主要讨论的是机器学习的项目流程.采用的业务示例是OCR(photo optical character recognition,照片光学字符识别),通过一张照片,识别出上面所有带字符的内容. 二.机器学习流水线 对于一个业务项目,通常机器学习是其中一部分的内容,对于整个项目而言,相当于一个流水线(pipeline). 对于OCR,主要流水线为:1-…
在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视觉的,但计算机视觉会使用该概念的升级.词袋最早出现在神经语言程序学(NLP)和信息检索(IR)领域,该模型忽略掉文本的语法和语序,用一组无序的单词来表达一段文字或者一个文档. 我们使用BOW在一系列文档中构建一个字典,然后使用字典中每个单词次数构成向量来表示每一个文档.比如: 文档1:I like…
项目链接 Abstract 在该论文中,作者首先介绍了对YOLOv1检测系统的各种改进措施.改进后得到的模型被称为YOLOv2,它使用了一种新颖的多尺度训练方法,使得模型可以在不同尺寸的输入上运行,并在速度和精度上很容易找到平衡.当处理速度为40FPS时,YOLOv2取得76.8mAP的成绩,超过了当时最好的检测方法Faster RCNN with ResNet和SSD 接着,作者提出了一种在object detection和classification两个任务上进行联合训练的方法.借助该方法,…
Python之路[第十六篇]:Django[基础篇]   Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Session等诸多功能. 基本配置 一.创建django程序 终端命令:django-admin startproject sitename IDE创建Django程序时,本质上都是自动执行上述命令 其他常用命令: python manage.py runserve…
数据结构中,针对线性表包含两种结构,一种是顺序线性表,一种是链表.顺序线性表适用于查询,时间复杂度为O(1),增删的时间复杂度为O(n).链表适用于增删,时间复杂度为O(1),查询的时间复杂度为O(n). 栈可以说是特殊的线性表,因为栈拥有线性表的基础特征基础上,有一些特殊的要求,比如后进先出,即每次插入的元素只能放在栈顶,每次弹出值也只能弹出栈顶.同样的,栈分成顺序栈和链栈.本篇内容为顺序栈的实现以及简单应用. 顺序栈可以应用到很多的地方,比如递归运算,语法检查(比如括号匹配问题),数值转换(…
其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象是什么.识别通常只处理已经检测到对象的区域,例如,人们总是会在已有的人脸图像的区域去识别人脸. 传统的目标检测方法与识别不同于深度学习方法,后者主要利用神经网络来实现分类和回归问题.在这里我们主要介绍如何利用OpecnCV来实现传统目标检测和识别,在计算机视觉中有很多目标检测和识别的技术,这里我们主…
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR. (2016) YOLO的全拼是You Only Look Once,顾名思义就是只看一次,把目标区域预测和目标类别预测合二为一,作者将目标检测任务看作目标区域预测和类别预测的回归问题.该方法采用单个神经网络直接预测物品边界和类别概率,实现端到端的物品检测.因此识…
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. R-CNN的全称是Region-CNN,它可以说是第一个成功将深度学习应用到目标检测上的算法.后面要讲到的Fast…
二十六. Python基础(26)--类的内置特殊属性和方法 ● 知识框架 ● 类的内置方法/魔法方法案例1: 单例设计模式 # 类的魔法方法 # 案例1: 单例设计模式 class Teacher:             #创建一个老师类     __isinstance = None     #创建一个私有静态变量, 准备用来指向一个裸着的对象     def __new__(cls, *args, **kwargs): #创建一个裸着的对象         if not cls.__is…
MyBatis基础入门<十六>缓存 >> 一级缓存 >> 二级缓存 >> MyBatis的全局cache配置 >> 在Mapper XML文件中设置缓存,默认情况下是没有开启缓存的. >> 在Mapper XML文件配置支持cache后,如果需要对个别查询进行调整,可以单独设置cache…
十六. Python基础(16)--内置函数-2 1 ● 内置函数format() Convert a value to a "formatted" representation. print(format('test', '<7')) # 如果第二个参数的数值小于len(参数1), 那么输出结果不变 print(format('test', '>7')) print(format('test', '^7')) ※ 注意区别于字符串的函数format() "{}…
第三百三十六节,web爬虫讲解2—urllib库中使用xpath表达式—BeautifulSoup基础 在urllib中,我们一样可以使用xpath表达式进行信息提取,此时,你需要首先安装lxml模块,然后将网页数据通过lxml下的etree转化为treedata的形式 urllib库中使用xpath表达式 etree.HTML()将获取到的html字符串,转换成树形结构,也就是xpath表达式可以获取的格式 #!/usr/bin/env python # -*- coding:utf8 -*-…