Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0     则L1和L2是可见的,L3是被覆盖的.     给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N…
不会写半平面交-然后发现可以转成对偶凸包问题 具体见这里:http://trinkle.blog.uoj.ac/blog/235 相关的原理我好像还是不太懂-orz #include<cstdio> #include<algorithm> const int N=50005; inline int read() { int s=0,f=1;char c=getchar(); while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}…
题目描述 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. 输入 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi 输出 从小到大输出可见直线的编号,两两中间…
发现需要求一个下凸的半平面上有几个交点. 然后我们把它变成凸包的问题. 好写.好调.还没有精度误差. #include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namesp…
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有其他直线,$1\le n 5\cdot 10^4$. 想法:神题qwq.看见网上的做法突然有一种学计算几何的冲动,直到看见一篇大神的blog说用单调栈做?这题困难其实就困难在如何规定两条直线之间本不存在的单调性.用单调栈就是讲即将进栈元素不断和栈顶比较,然后弹来弹去最后剩下的都是可见的.不容易难想到:将直…
cycleke神说要用半平面交(其实他也用的凸包),把我吓了一跳,后来发现(看题解)其实可以先按斜率排序,再将最小的两条线入栈,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈.这是一个开口向上的半凸包. #include <cstdio> #include <iostream> #include <cstring> #include <algorithm> #include <cmath> #define eps 1e-8 using…
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output…
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从…
Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8638  Solved: 3327[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,…
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output…
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. 很明显最后的结果应该是一个斜率递增的结果,那么我们先按斜率排序,然后用单调栈维护,如果要加入的线i和last-1的交点在i和last的左…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的交点的位置关系即可. 代码如下: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ; int n,top,ans[max…
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格 Sample Input 3-1 01 00 0 Sample Output 1 2 题解 算法比较直观,先按斜率排序,再将最小的两条线入栈,然后依次处理每条线,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈 :这样为什么对呢?因为对如任意一个开口向上的半凸包,从左到右依次观察每条边和每…
[BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5932  Solved: 2254[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5120  Solved: 1899[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0     则L1和L…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4453  Solved: 1636[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    L1:y=x; L2:y=-x; L3:y=0    则L1和L2是可…
[BZOJ1007]水平可见直线(单调栈) 题解 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y=x; L2:y=-x; L3:y=0 则L1和L2是可见的,L3是被覆盖的. 给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2741[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7940  Solved: 3030[Submit][Status][Discuss] Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3:y=0则L1和L2是可见的,L3是被覆盖的.给…
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1007 Description  在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.     例如,对于直线:     L1:y=x; L2:y=-x; L3:y=0  …
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    L1:y=x; L2:y=-x; L3:y=0    则L1和L2是可见的,L3是被覆盖的.    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 <…
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=1007; 题解 其实就是求每条直线的上半部分的交 所以做裸半平面交即可 #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; inline void read(int &x){ x=0;char ch;boo…
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.    例如,对于直线:    L1:y=x; L2:y=-x; L3:y=0    则L1和L2是可见的,L3是被覆盖的.    给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线. Input 第一行为N(0 < N < 50000),接下来的N行输入A…
按斜率排序后画个图,用单调栈维护这个半平面交 # include <bits/stdc++.h> # define IL inline # define RG register # define Fill(a, b) memset(a, b, sizeof(a)) using namespace std; typedef long long ll; const int _(50010), INF(2147483647); IL ll Read(){ RG char c = getchar();…
用了trinkle的方法,半平面交转凸包. 写了一发,既没有精度误差,也很好写. #include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #…
其实并不算标准半平面交?但是思路差不多 先按照斜率排序,然后用栈维护凸壳,每遇到重斜率或a[i],s[top-1]交点的x轴在s[top],s[top-1]交点左侧,则说明s[top]被a[i],s[top-1]覆盖,弹栈即可: #include<iostream> #include<cstdio> #include<algorithm> using namespace std; const int N=50005; const double eps=1e-8; int…
思路:首先按斜率排序,如果斜率相同就取截距最大的,显然截距小的会被覆盖而对答案没有贡献,然后考虑斜率不同的如何统计答案,可以用一个单调栈维护,当前新插入的直线显然斜率是要比当前栈顶斜率要大的,然后如果新插入的直线l[i]与stack[top]的交点在stack[top]与stack[top-1]的交点的右边,那么就不需要退栈直接加进来就好了,否则就要退栈直到条件成立. #include<iostream> #include<cstdio> #include<cstring&g…
http://www.lydsy.com/JudgeOnline/problem.php?id=1007 一开始我贪心的写了下,当然全wa了.. 这题看了题解感觉很简单. 首先什么情况才能看到呢? wobuzhidao. 我画图才看出门道的.. 当前直线与相对他斜率次大和次次大的2条直线时,如果与次大的(或者次次大)的交点在次大与次次大的交点左边,那么次大的直线一定被覆盖掉了! 画图自己看!(其实也就是这三个点形成一个凸包,然后上凸包的边所在直线一定看得到,下凸包一定被覆盖!) 所以我们用一个栈…