MCMC: The Metropolis-Hastings Sampler】的更多相关文章

本文主要译自 MCMC: The Metropolis Sampler 正如之前的文章讨论的,我们可以用一个马尔可夫链来对目标分布 \(p(x)\) 进行采样,通常情况下对于很多分布 \(p(x)\),我们无法直接进行采样.为了实现这样的目的,我们需要为马尔可夫链设计一个状态转移算子(transition operator),是的这个马尔可夫链的稳态分布与目标分布吻合.Metropolis 采样算法(更通常的是 Metropolis-Hastings 采样算法)采用简单的启发式方法实现了这样的状…
蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   在以贝叶斯方法为基础的机器学习技术中,通常需要计算后验概率,然后通过最大后验概率(MAP)等方法进行参数推断和决策.然而,在很多时候,后验分布的形式可能非常复杂,这个时候寻找其中的最大后验估计或者对后验概率进行积分等计算往往非常困…
马尔科夫链的蒙特卡洛采样的核心思想是构造一个Markov chain,使得从任意一个状态采样开始,按该Markov chain转移,经过一段时间的采样,逼近平稳分布stationary distribution/equilibrium distribution(目标分布),最后选用逼近后的样本作为最终的采样.那么为什么要用MCMC呢,在什么情况下使用呢,这里给出一些个人的学习心 得. 1. 什么情况下用? 很多书籍或论文给出的情况是,目标分布难以被直接估计的情况下使用,那么具 体是什么情况呢?举…
Math.Net Numerics has capability to conduct Markov Chair Monte Carlo simulations, yet the document is very sparse. The only examples I found are in F# (see below). In this note, I attempt to port these examples into C# and hope others may find it use…
(学习这部分内容大约需要1.5小时) 摘要 马尔科夫链蒙特卡洛(Markov chain Monte Carlo, MCMC)是一种近似采样算法, 它通过定义稳态分布为 \(p\) 的马尔科夫链, 在目标分布 \(p\) 中进行采样. Metropolis-Hastings 是找到这样一条马尔科夫链的非常一般的方法: 选择一个提议分布(proposal distribution), 并通过随机接受或拒绝该提议来纠正偏差. 虽然其数学公式是非常一般化的, 但选择好的提议分布却是一门艺术. 预备知识…
[https://zhuanlan.zhihu.com/p/30226687] LDA模型的前世今生 在文本挖掘中,有一项重要的工作就是分析和挖掘出文本中隐含的结构信息,而不依赖任何提前标注的信息.LDA(Latent Dirichlet Allocation)模型在过去十年里开启了一个主题模型领域. LDA 的论文作者是戴维·布雷(David Blei).吴恩达和迈克尔·乔丹(Michael Jordan).这三位都是今天机器学习界炙手可热的人物.论文最早发表在 2002 年的神经信息处理系统…
本文主要译自:MCMC:The Metropolis-Hastings Sampler 上一篇文章中,我们讨论了Metropolis 采样算法是如何利用马尔可夫链从一个复杂的,或未归一化的目标概率分布进行采样的.Metropolis 算法首先在马尔可夫链中基于上一个个状态 \(x^{(t-1)}\) 推荐一个新的状态 \(x^*\),这个新状态是根部建议分布 \(q(x^*|x^{(t-1)})\) 进行采样得到的.算法基于目标分布函数在 \(x^*\) 上的取值接受或者拒绝 \(x^*\).…
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇式的人物.Diaconis14岁就成了一名魔术师,为了看懂数学家Feller的概率论著作,24岁时进入大学读书.他向<科学美国人>投稿介绍他的洗牌方法,在<科学美国人>上常年开设数学游戏专栏的著名数学科普作家马丁•加德纳给他写了推荐信去哈佛大学,当时哈佛的统计学家Mosteller 正…
从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning tutorial 里面讲解到的 RBM 用到了 Gibbs sampling,当时因为要赶着做项目,虽然一头雾水,但是也没没有时间仔细看.趁目前比较清闲,把 machine learning 里面的 sampling methods 理一理,发现内容还真不少,有些知识本人也是一知半解,所以这篇博客不可…
本文用讲一下指定分布的随机抽样方法:MC(Monte Carlo), MC(Markov Chain), MCMC(Markov Chain Monte Carlo)的基本原理,并用R语言实现了几个例子: 1. Markov Chain (马尔科夫链) 2. Random Walk(随机游走) 3. MCMC具体方法: 3.1 M-H法 3.2 Gibbs采样 PS:本篇blog为ese机器学习短期班参考资料(20140516课程),课上讲详述. 下面三节分别就前面几点简要介绍基本概念,并附上代…