从AlexNet(2012)开始】的更多相关文章

AlexNet             Alexnet是一年一度的ImageNet大型视觉识别挑战赛(ILSVRC)2012年冠军,ILSVRC使用ImageNet的一个子集,分为1000种类别,每种类别中都有大约1000张图像,大约有120万张训练图像,50,000张验证图像和150,000张测试图像. Alexnet共有600000000训练参数和650000神经元. 基本结构 卷积层:5层 全连接层:3层 深度:8层 参数个数:60M 神经元个数:650k 分类数目:1000类 Conv1…
目录 写在前面 网络结构 创新点 其他有意思的点 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 本文重点在于回顾深度神经网络在CV领域的First Blood--AlexNet,AlexNet是首个在大规模图像识别问题取得突破性进展的深度神经网络,相比基于SIFT+FVs.稀疏编码的传统方法,性能提升了10多个百分点(error rate 26.2% → 15.3%,ILSVRC-2012),并由此开启了深度神经网络血洗CV各领域的开端,如下图所示(Super…
ILSVRC(ImageNet Large Scale Visual Recognition Challenge)分类比赛.AlexNet 2012年冠军(top-5错误率16.4%,额外数据15.3%,8层神经网络).VGGNet 2014年亚军(top-5错误率7.3%,19层神经网络).Google Inception 2014年冠军(top-5错误率6.7%,22层神经网络).ResNet 2015年冠军(top-5错误率3.57%,152层神经网络).人眼错误率5.1%.卷积神经网络基…
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet 2012年,AlexKrizhevsky提出了深度卷积神经网络模型AlexNet,可以看作LeNet的一种更深更宽的版本.该模型包含了6亿3000万个连接,6000万个参数和65万个神经元,拥有5个卷积层,其中3个卷积层后面连接了最大池化层,最后还有3个全连接层.它将LeNet的思想得到更广泛的传…
AlexNet (2012) The network had a very similar architecture as LeNet by Yann LeCun et al but was deeper, with more filters per layer, and with stacked convolutional layers. It consisted 11x11, 5x5,3x3, convolutions, max pooling, dropout, data augmenta…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需.如果读者是初接触CNN,建议可以先看一看"Deep Learning(深度学习)学习笔记整理系列"中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助. Le…
前言 深度卷积网络极大地推进深度学习各领域的发展,ILSVRC作为最具影响力的竞赛功不可没,促使了许多经典工作.我梳理了ILSVRC分类任务的各届冠军和亚军网络,简单介绍了它们的核心思想.网络架构及其实现. 代码主要来自:https://github.com/weiaicunzai/pytorch-cifar100 ImageNet和ILSVRC ImageNet是一个超过15 million的图像数据集,大约有22,000类. ILSVRC全称ImageNet Large-Scale Visu…
1.AlexNet 模型简介 由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷积神经网络乃至深度学习重新引起了广泛的关注. 2.AlexNet 模型特点 AlexNet是在LeNet的基础上加深了网络的结构,学习更丰富更高维的图像特征.AlexNet的特点:1)更深的网络结构2)使用层叠的卷积层,即卷积层+卷积层+池化层来提取图像的特征3)使用D…
Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) Introduction Link to Part 1Link to Part 2 In this post, we’ll go into summarizing a lot of the new and important develo…
医学图像识别的问题 如果将CNN应用于医学图像,首要面对的问题是训练数据的缺乏.因为CNN的训练数据都需要有类别标号,这通常需要专家来手工标记.要是标记像ImageNet这样大规模的上百万张的训练图像,简直是不可想象的. 因为CNN的参数多,必须依靠大规模的训练数据才能防止过度拟合(Over Fitting).在数据量少的情况下,有两种解决方案:一个叫Data Augmentation.就是依赖现有的图像,通过旋转,平移,变形等变化,产生更多的图像.二是使用转移学习(Transfer Learn…
这是<GPU学习深度学习>系列文章的第三篇,主要是接着上一讲提到的如何自己构建深度神经网络框架中的功能模块,进一步详细介绍 Tensorflow 中 Keras 工具包提供的几种深度神经网络模块.本系列文章主要介绍如何使用 腾讯云GPU服务器 进行深度学习运算,前面主要介绍原理部分,后期则以实践为主. 往期内容: GPU 学习深度学习系列Part 1:传统机器学习的回顾 GPU 学习深度学习系列Part 2:Tensorflow 简明原理 上一讲中,我们用最简单的代码,实现了最简单的深度学习框…
卷积神经网络(Convolutional neural networks,CNNs)来源于对大脑视觉皮层的研究,并于1980s开始应用于图像识别.现如今CNN已经在复杂的视觉任务中取得了巨大成功,比如图像搜索,自动驾驶,语言自动分类等等.同时CNN也应用于了其他领域,比如语音识别和自然语言处理. 13.1 视觉皮层机理 David H. Hubel和Torsten Wiesel于1958.1959年在猫的身上做实验,给出了关于视觉皮层结构的深刻见解(作者因此与1981年获得诺贝尔生物或医学奖).…
目录 写在前面 Convolution VS Group Convolution Group Convolution的用途 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 Group Convolution分组卷积,最早见于AlexNet--2012年Imagenet的冠军方法,Group Convolution被用来切分网络,使其在2个GPU上并行运行,AlexNet网络结构如下: Convolution VS Group Convolution 在介绍Gro…
介绍过去几年中数个在 ImageNet 竞赛(一个著名的计算机视觉竞赛)取得优异成绩的深度卷积神经网络. LeNet LeNet 证明了通过梯度下降训练卷积神经网络可以达到手写数字识别的最先进的结果.这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知. net = nn.Sequential() net.add( nn.Conv2D(channels=6, kernel_size=5, activation='sigmoid'), nn.MaxPool2D(pool_size=2, str…
目录 I. 基础知识 II. 早期尝试 1. Neocognitron, 1980 2. LeCun, 1989 A. 概况 B. Feature maps & Weight sharing C. 网络设计 D. 实验 3. LeNet, 1998 III. 历史性突破:AlexNet, 2012 1. Historic 2. 困难之处 3. 选择CNN 4. 本文贡献 5. 网络设计 A. ReLU B. Training on Multiple GPUs C. Local Response…
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…
转:https://github.com/GKalliatakis/Adventures-in-deep-learning Adventures in deep learning State-of-the-art Deep Learning publications, frameworks & resources Overview Deep convolutional neural networks have led to a series of breakthroughs in large-s…
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolutional Neural Networks Posted on August 11, 2016 by ujjwalkarn What are Convolutional Neural Networks and why are they important? Convolutional Neural…
本人最近初学Hinton大神的论文<Dynamic Routing Between Capsules >,对深度神经网络的内容进行了简要总结,将观看“从传统神经网络的角度解读Capsule”视频的内容做了笔记.感谢网络资源,让我学习到很多知识.以后会有更新. 作者: 嫩芽33出处: http://www.cnblogs.com/nenya33/p/8079861.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但须保留此段声明,并在文章中给出原文连接:否则必究法律责任 ======…
目录 写在前面 网络架构与动机 特征可视化 其他 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 ZFNet出自论文< Visualizing and Understanding Convolutional Networks>,作者Matthew D. Zeiler和Rob Fergus--显然ZFNet是以两位作者名字的首字母命名的,截止20190911,论文引用量为4207.ZFNet通常被认为是ILSVRC 2013的冠军方法,但实际上ZFNet排在第3…
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/comment-page-4/?unapproved=31867&moderation-hash=1ac28e426bc9919dc1a295563f9c60ae#comment-31867 一.什么是卷积神经网络.为什么卷积神经网络很重要? 卷…
本文总结ML面试常见的问题集 转载来源:https://blog.csdn.net/v_july_v/article/details/78121924 71.看你是搞视觉的,熟悉哪些CV框架,顺带聊聊CV最近五年的发展史如何? 原英文:adeshpande3.github.io作者:Adit Deshpande,UCLA CS研究生译者:新智元闻菲.胡祥杰译文链接:https://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==&mid=2651986617&am…
深度卷积神经网络(AlexNet) 在LeNet提出后的将近20年里,神经网络一度被其他机器学习方法超越,如支持向量机.虽然LeNet可以在早期的小数据集上取得好的成绩,但是在更大的真实数据集上的表现并不尽如人意.一方面,神经网络计算复杂.虽然20世纪90年代也有过一些针对神经网络的加速硬件,但并没有像之后GPU那样大量普及.因此,训练一个多通道.多层和有大量参数的卷积神经网络在当年很难完成.另一方面,当年研究者还没有大量深入研究参数初始化和非凸优化算法等诸多领域,导致复杂的神经网络的训练通常较…
导言:    自2012年AlexNet在ImageNet比赛上获得冠军,卷积神经网络逐渐取代传统算法成为了处理计算机视觉任务的核心.    在这几年,研究人员从提升特征提取能力,改进回传梯度更新效果,缩短训练时间,可视化内部结构,减少网络参数量,模型轻量化, 自动设计网络结构等这些方面,对卷积神经网络的结构有了较大的改进,逐渐研究出了AlexNet.ZFNet.VGG.NIN.GoogLeNet和Inception系列.ResNet.WRN和DenseNet等一系列经典模型,MobileNet…
说明: 这个属于个人的一些理解,有错误的地方,还希望给予教育哈- 此处以caffe官方提供的AlexNet为例. 目录: 1.背景 2.框架介绍 3.步骤详细说明 5.参考文献 背景: AlexNet是在2012年被发表的一个金典之作,并在当年取得了ImageNet最好成绩,也是在那年之后,更多的更深的神经网路被提出,比如优秀的vgg,GoogleLeNet. 其官方提供的数据模型,准确率达到57.1%,top 1-5 达到80.2%. 这项对于传统的机器学习分类算法而言,已经相当的出色. 框架…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
[caffe]深度学习之图像分类模型AlexNet解读 原文地址:http://blog.csdn.net/sunbaigui/article/details/39938097   本文章已收录于:  深度学习知识库  分类: deep learning(28)  版权声明:本文为博主原创文章,未经博主允许不得转载. 在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究ale…
在imagenet上的图像分类challenge上Alex提出的alexnet网络结构模型赢得了2012届的冠军.要研究CNN类型DL网络模型在图像分类上的应用,就逃不开研究alexnet.这是CNN在图像分类上的经典模型(DL火起来之后). 在DL开源实现caffe的model例子中.它也给出了alexnet的复现.详细网络配置文件例如以下https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/train…
版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭建完整的AlexNet 5. 用AlexNet识别猫狗图片 5.1. 定义分类 5.2. 训练网络 5.3. 验证 1. 图片数据处理 一张图片是由一个个像素组成,每个像素的颜色常常用RGB.HSB.CYMK.RGBA等颜色值来表示,每个颜色值的取值范围不一样,但都代表了一个像素点数据信息.对图片的…
卷积神经网络(convolutional neural network,CNN),权值共享(weight sharing)网络结构降低模型复杂度,减少权值数量,是语音分析.图像识别热点.无须人工特征提取.数据重建,直接把图片作输入,自动提取特征,对平移.比例缩放.倾斜等图片变形具有高度不变形.卷积(convolution),泛函数分析积分变换数学方法,两个函数f和g生成第三个函数数学算子,表征函灵敏f与g翻转.平移重叠部分面积.f(x).g(x)为R1两个可积函数.积分新函数为函数f与g卷积.∫…