Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but even that is not enough. Suppose the shell necklace is a sequence of…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5730 [题目大意] 给出一个数组w,表示不同长度的字段的权值,比如w[3]=5表示如果字段长度为3,则其权值为5,现在有长度为n的字段,求通过不同拆分得到的字段权值乘积和. [题解] 记DP[i]表示长度为i时候的答案,DP[i]=sum_{j=0}^{i-1}DP[j]w[i-j],发现是一个卷积的式子,因此运算过程可以用FFT优化,但是由于在计算过程中DP[j]是未知值,顺次计算复杂度是O(…
Description 给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案 题解: dp[i]表示组合成包含i个贝壳的项链的总方案数 转移:dp[i]=Σdp[i-j]*a[j](1<=j<=i) #include <bits/stdc++.h> using namespace std; #define dob complex<double> #define rint register int #defin…
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5730 Description Perhaps the sea‘s definition of a shell is the pearl. However, in my view, a shell necklace with n beautiful shells contains the most sincere feeling for my best lover Arrietty, but…
[Codeforces 553E]Kyoya and Train(期望DP+Floyd+分治FFT) 题面 给出一个\(n\)个点\(m\)条边的有向图(可能有环),走每条边需要支付一个价格\(c_i\),需要的时间为\([1,T]\)中随机的整数,时间为\(j\)的概率为\(p_{i,j}\).从\(1\)出发走到\(n\),如果到\(n\)的时间超过\(T\),就需要再支付\(X\).找出一条路径,使得支付钱数的期望值最小.输出最小期望. \(n \leq 50,m \leq 100,T \…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] DP+CDQ分治+BIT 先把序列反转一下,lis求起来方便. 对于第一问,我们要求的是 f[i]=max{ f[j] },j<i,x[j]<x[i],y[j]<y[i] 发现需要满足的条件就是一个三维偏序,可以用CDQ分治求解 不难发现第二问其实就等于:一颗导弹所在的lis数/总的lis…
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\frac{i(i-1)}{2}} \] \[ \begin{align} g_i&=f_i-\sum_{j=1}^{i-1}\binom{n-1}{j-1}g_jf_{i-j}\\ &=f_i-(i-1)!\sum_{j=1}^{i-1}\frac{g_j}{(j-1)!}\frac{f_{i-…
题目描述  给出一棵以1为根的带边权有根树,对于每个根节点以外的点$v$,如果它与其某个祖先$a$的距离$d$不超过$l_v$,则可以花费$p_vd+q_v$的代价从$v$到$a$.问从每个点到1花费的最小代价(中途可以经停其它点) 输入 第 1 行包含2个非负整数 n,t,分别表示城市的个数和数据类型(其意义将在后面提到).输入文件的第 2 到 n 行,每行描述一个除SZ之外的城市.其中第 v 行包含 5 个非负整数 $f_v,s_v,p_v,q_v,l_v$,分别表示城市 v 的父亲城市,它…
[BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量. 显然\(g(i)=2^{C_i^2}\)种,但是我们要把不联通的去掉. 枚举1号点所在联通块大小\(j\).从剩下\(i-1\)个点里选\(j-1\)个点和1号点构成联通块,有\(C_{i-1}^{j-1}\)种选法.1号点所在联通块的连边方案有\(f(i)\)种,剩下\(i-j\)个点随便连边…
首先读出题意,然后发现这是一道DP,我们可以获得递推式为 然后就知道,不行啊,时间复杂度为O(n2),然后又可以根据递推式看出这里面可以拆解成多项式乘法,但是即使用了fft,我们还需要做n次多项式乘法,时间复杂度又变成O(n2 * log n),显然不可以.然后又利用c分治思维吧问题进行拆分问题但是,前面求出来的结果对后面的结果会产生影响,所以我们使用cdq分治思想来解决这个问题,时间复杂度变为O(n * log2n). #include<bits/stdc++.h> using namesp…