LDA的Gibbs Sampling求解】的更多相关文章

<LDA数学八卦>对于LDA的Gibbs Sampling求解讲得很详细,在此不在重复在轮子,直接贴上该文这部分内容. Gibbs Sampling 批注: 1.              对于第i个词语,上式k(主题类型)未知,取值范围为[1, K],t(词语类型)已知,即观测值. 2.              由于doc-topic与topic-word独立,所以第i个词语主题为k,类型为t的概率显然是主题k概率在doc m-topic分布上的积分乘以词语t概率在topic k-word…
http://blog.csdn.net/pipisorry/article/details/51525308 吉布斯采样的实现问题 本文主要说明如何通过吉布斯采样进行文档分类(聚类),当然更复杂的实现可以看看吉布斯采样是如何采样LDA主题分布的[主题模型TopicModel:隐含狄利克雷分布LDA]. 关于吉布斯采样的介绍文章都停止在吉布斯采样的详细描述上,如随机采样和随机模拟:吉布斯采样Gibbs Sampling(why)但并没有说明吉布斯采样到底如何实现的(how)? 也就是具体怎么实现…
注意:$\alpha$和$\beta$已知,常用为(和LDA EM算法不同) 1.   为什么可用 LDA模型求解的目标为得到$\phi$和$\theta$ 假设现在已知每个单词对应的主题$z$,则可以求得$\theta$的后验分布,求期望得到$E(\theta)$作为每份文档的主题 $E(\theta_{mk})=\frac{n_m^k+\alpha_k}{n_m+\alpha_k}$ 同样,可以求得$\phi$的后验分布,求期望$E(\phi)$作为每个主题下生成对应单词的概率 $E(\ph…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 接下来重点讲一下RBM模型求解方法,其实用的依然是梯度优化方法,但是求解需要用到随机采样的方法,常见的有:Gibbs Sampling和对比散度(contrastive divergence, CD[8])算法. RBM目标函数 假设给定的训练集合是S={vi},总数是ns,其中每个样本表示为vi=(vi1,vi2,-,vinv…
http://blog.csdn.net/pipisorry/article/details/51373090 吉布斯采样算法详解 为什么要用吉布斯采样 通俗解释一下什么是sampling. sampling就是以一定的概率分布,看发生什么事件.举一个例子.甲只能E:吃饭.学习.打球,时间T:上午.下午.晚上,天气W:晴朗.刮风.下雨.现在要一个sample,这个sample可以是:打球+下午+晴朗...问题是我们不知道p(E,T,W),或者说,不知道三件事的联合分布.当然,如果知道的话,就没有…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:05:00  今天的主要内容:Markov Chain Monte Carlo,Metropolis-Hastings,Gibbs Sampling,Slice Sampling,Hybrid Monte Carlo. 上一章讲到的平均场是统计物理学中常用的一种思想,将无法处理的复杂多体问题分解成可以处理的单体问题来近似,变分推断便是在平均场的假设约束下求泛函L(Q)极值的最优化…
二维Gibbs Sampling算法 Gibbs Sampling是高维概率分布的MCMC采样方法.二维场景下,状态(x, y)转移到(x’, y’),可以分为三种场景 (1)平行于y轴转移,如上图中从状态A转移到状态B. (2)平行于x轴转移,如上图中从状态A转移到状态C. (3)其他情况转移,如上图从状态A转移到状态D. 对于上述三种情况,我们构造细致平稳条件 (1)A -> B B –> A 显然有 即 我们令转移矩阵中x = x1轴上的状态转移概率为p(y|x1),则场景一天然满足细致…
算法里面是随机初始了一个分布,然后进行采样,然后根据每次采样的结果去更新分布,之后接着采样直到收敛. 1.首先明确一下MCMC方法. 当我们面对一个未知或者复杂的分布时,我们经常使用MCMC方法来进行分布采样.而采样的目的是得到这个分布的样本,通过这些样本,我们就能明确出该分布的具体结构.所以MCMC本身就是解决无法直接采样或理解的分布问题的,所以不是对已知分布进行采样. 而gibbs采样时MCMC方法的一种改进策略,所以解决的是一类问题.在LDA中,后验概率无法直接取得,我们通过gibbs采样…
本文是对参考资料中多篇关于sampling的内容进行总结+搬运,方便以后自己翻阅.其实参考资料中的资料写的比我好,大家可以看一下!好东西多分享!PRML的第11章也是sampling,有时间后面写到PRML的笔记中去:) 背景 随机模拟也可以叫做蒙特卡罗模拟(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室…
http://cos.name/2013/01/lda-math-mcmc-and-gibbs-sampling/ 3.1 随机模拟 随机模拟(或者统计模拟)方法有一个很酷的别名是蒙特卡罗方法(Monte Carlo Simulation).这个方法的发展始于20世纪40年代,和原子弹制造的曼哈顿计划密切相关,当时的几个大牛,包括乌拉姆.冯.诺依曼.费米.费曼.Nicholas Metropolis, 在美国洛斯阿拉莫斯国家实验室研究裂变物质的中子连锁反应的时候,开始使用统计模拟的方法,并在最早…