PyTorch 中 weight decay 的设置】的更多相关文章

先介绍一下 Caffe 和 TensorFlow 中 weight decay 的设置: 在 Caffe 中, SolverParameter.weight_decay 可以作用于所有的可训练参数, 不妨称为 global weight decay, 另外还可以为各层中的每个可训练参数设置独立的 decay_mult, global weight decay 和当前可训练参数的 decay_mult 共同决定了当前可训练参数的 weight decay. 在 TensorFlow 中, 某些接口…
weight decay(权值衰减)的最终目的是防止过拟合.在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的模型损失函数的值也就大. momentum是梯度下降法中一种常用的加速技术.对于一般的SGD,其表达式为,沿负梯度方向下降.而带momentum项的SGD则写生如下形式:其中即momentum系数,通俗的理…
在代码中改好存储Log的路径 命令行中输入 tensorboard --logdir /home/huihua/NewDisk1/PycharmProjects/pytorch-deeplab-xception-master/run 会出来一个网站,复制到浏览器即可可视化loss,acc,lr等数据的变化过程. 举例说明pytorch中设置summary的方式: import argparse import os import numpy as np from tqdm import tqdm…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/weixin_42279044/article/details/101053719 关于数据格式 默认日常描述图片尺寸,采用[w,h]的形式,比如一张图片是1280*800就是指宽w=1280, 高h=800. 因此在cfg中所指定img scale = [1333, 800]就是指w=1333, h=800 从而转入计算机后,要从w,h变成…
转载:https://zhuanlan.zhihu.com/p/53927068 https://blog.csdn.net/wangdongwei0/article/details/88956527 pytorch最后的权重文件是.pth格式的. 经常遇到的问题: 进行finutune时,改配置文件中的学习率,发现程序跑起来后竟然保持了以前的学习率, 并没有使用新的学习率. 原因: 首先查看.pth文件中的内容,我们发现它其实是一个字典格式的文件: 其中保存了optimizer和schedul…
介绍 深度学习现在是一个非常猖獗的领域 - 有如此多的应用程序日复一日地出现.深入了解深度学习的最佳方法是亲自动手.尽可能多地参与项目,并尝试自己完成.这将帮助您更深入地掌握主题,并帮助您成为更好的深度学习实践者. 在本文中,我们将看一个有趣的多模态主题,我们将结合图像和文本处理来构建一个有用的深度学习应用程序,即图像字幕.图像字幕是指从图像生成文本描述的过程 - 基于图像中的对象和动作.例如: 这个过程在现实生活中有很多潜在的应用.值得注意的是保存图像的标题,以便仅在此描述的基础上可以在稍后阶…
2018年07月07日 17:30:40 __矮油不错哟 阅读数:221   1. 数据处理 数据加载 ImageFolder DataLoader加载数据 sampler:采样模块 1. 数据处理 数据加载 在Pytorch 中,数据加载可以通过自己定义的数据集对象来实现.数据集对象被抽象为Dataset类,实现自己定义的数据集需要继承Dataset,并实现两个Python魔法方法. __getitem__: 返回一条数据或一个样本.obj[index]等价于obj.__getitem__(i…
Faster-RCNN论文中在RoI-Head网络中,将128个RoI区域对应的feature map进行截取,而后利用RoI pooling层输出7*7大小的feature map.在pytorch中可以利用: torch.nn.functional.adaptive_max_pool2d(input, output_size, return_indices=False) torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)…
最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络. pytorch中有很方便的dataloader函数来方便我们进行批处理,做了简单的例子,过程很简单,就像把大象装进冰箱里一共需要几步? 第一步:打开冰箱门. 我们要创建torch能够识别的数据集类型(pytorch中也有很多现成的数据集类型,以后再说). 首先我们建立两个向量X和Y,一个作为输入的数据,一个作为正确的结果: 随后我们需要把X和Y组成一个完整的数据集,…
转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn.html?highlight=conv2d#torch.nn.Conv2d https://www.cnblogs.com/chuantingSDU/p/8120065.html https://blog.csdn.net/chaolei3/article/details/79374563 1x1…