spark存储管理之磁盘存储--DiskStore】的更多相关文章

DiskStore 接着上一篇,本篇,我们分析一下实现磁盘存储的功能类DiskStore,这个类相对简单.在正式展开之前,我觉得有必要大概分析一下BlockManager的背景,或者说它的运行环境,运行的作用范围.Blockmanager这个类其实在运行时的每个节点都会有一个实例(包括driver和executor进程),因为不论是driver端进行广播变量的创建,还是executor端shuffle过程中写shuffle块,或者是任务运行时结果太大需要通过BlockManager传输,或者是R…
Spark存储管理(读书笔记) 转载请注明出处:http://www.cnblogs.com/BYRans/ Spark的存储管理 RDD的存放和管理都是由Spark的存储管理模块实现和管理的.本文从架构和功能两个角度对Spark的存储管理模块进行介绍. 架构角度 从架构角度,存储管理模块主要分为以下两层: 通信层:存储管理模块采用的是主从结构来实现通信层,主节点和从节点之间传输控制信息.状态信息. 存储层:存储管理模块需要把数据存储到硬盘或者内存中,必要时还需要复制到远端,这些操作由存储层来实…
Spark存储管理机制 概要 01 存储管理概述 02 RDD持久化 03 Shuffle数据存储 04 广播变量与累加器 01 存储管理概述 思考: RDD,我们可以直接使用而无须关心它的实现细节,RDD是Spark的基础,但是有个问题大家也许会比较关心:RDD所操作的数据究竟在哪里?它是如何存储的. 回顾: 1.1 .存储管理模块架构—从架构上来看   1.1.1     通信层 通信层面采用主从方式实现通信(主从节点间互换消息) 1.1.2 存储层 存储层负责提供接口来存储数据(可把数据存…
累加器 -- Accumulators 广播变量--Broadcast Variables 思考 回顾 存储管理模块架构--从架构上来看 存储管理模块架构--通信层 存储管理模块架构--存储层 存储管理模块架构--数据块与分区的关系 回顾-RDD控制操作 持久化级别 如何选择持久化级别 缓存淘汰机制 Shuffle数据持久化 广播变量--Broadcast Variables…
一.概述 根据<深入理解Spark:核心思想与源码分析>一书,结合最新的spark源代码master分支进行源码阅读,对新版本的代码加上自己的一些理解,如有错误,希望指出. 1.块管理器BlockManager的实现 块管理器是Spark存储体系的核心组件,Driver Application和Executor都会创建BlockManager,源代码位置在core/org.apache.spark.storage,部分代码如下. private[spark] val externalShuff…
8.初始化管理器BlockManager 无论是Spark的初始化阶段还是任务提交.执行阶段,始终离不开存储体系.Spark为了避免Hadoop读写磁盘的I/O操作成为性能瓶颈,优先将配置信息.计算结果等数据存入内存,这极大地提升了系统的执行效率.正是因为这一关键决策,才让Spark能在大数据应用中表现出优秀的计算能力.BlockManager是在sparkEnv中被创建的,代码如下: 8.1 存储体系概述 8.1.1 块管理器BlockManager的实现 块管理器BlockManager是S…
Spark是现在很流行的一个基于内存的分布式计算框架,既然是基于内存,那么自然而然的,内存的管理就是Spark存储管理的重中之重了.那么,Spark究竟采用什么样的内存管理模型呢?本文就为大家揭开Spark内存管理模型的神秘面纱. 我们在<Spark源码分析之七:Task运行(一)>一文中曾经提到过,在Task被传递到Executor上去执行时,在为其分配的TaskRunner线程的run()方法内,在Task真正运行之前,我们就要构造一个任务内存管理器TaskMemoryManager,然后…
RDD被视为由不同的数据块组成,对于RDD的存取是以数据块为单位的,本质上分区(partition)和数据块(block)是等价的,只是看待的角度不同. 数据块 Spark存储管理模块中所管理的几种主要数据块 RDD数据块:用来标识所缓存的RDD数据 Shuffle数据块:用来标识持久化的Shuffle数据 广播变量数据块:用来标识所存储的广播变量数据 任务返回结果数据块:用来标识存储在存储管理模块内部的任务返回结果 通常情况下任务返回结果随任务一起通过Akka返回到Driver端,但是当任务返…
转载自:http://www.aboutyun.com/thread-19652-1-1.html 问题导读 1.spark共享变量的作用是什么?2.什么情况下使用共享变量?3.如何在程序中使用共享变量?4.广播变量源码包含哪些内容? spark编程中,我们经常会遇到使用全局变量,来累加或则使用全局变量.然而对于分布式编程这个却与传统编程有着很大的区别.不可能在程序中声明一个全局变量,在分布式编程中就可以直接使用.因为代码会分发到多台机器,导致我们认为的全局变量失效.那么spark,spark…
转载自:    spark总结 第一个Spark程序 /** * 功能:用spark实现的单词计数程序 * 环境:spark 1.6.1, scala 2.10.4 */ // 导入相关类库import org.apache.spark._ object WordCount { def main(args: Array[String]) { // 建立spark运行上下文 val sc = new SparkContext("local[3]", "WordCount&quo…