莫烦TensorFlow_06 plot可视化】的更多相关文章

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) # hang lie biases = tf.Variable(tf.zeros([1,…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # # add layer # def add_layer(inputs, in_size, out_size,n_layer, activation_function = None): layer_name = 'layer%s' % n_layer with tf.name_scope(layer_name): with tf.name_sco…
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def add_layer(inputs, in_size, out_size, activation_function = None): with tf.name_scope('layer'): with tf.name_scope('Weights'): Weights = tf.Variable(tf.random_normal([in_si…
  一.Matplotlib[结果可视化] #import os #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #添加一个神经层,定义添加神经层的函数 def add_layer(inputs, in_size, out_size, activation_function = None): Weights =…
1,感谢莫烦 2,第一个实例:用tf拟合线性函数 import tensorflow as tf import numpy as np # create data x_data = np.random.rand(100).astype(np.float32) y_data = x_data*0.1 + 0.3 #先创建我们的线性函数目标 #搭建模型 Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) biases = tf.Varia…
bilibili莫烦tensorflow视频教程学习笔记 1.初次使用Tensorflow实现一元线性回归 # 屏蔽警告 import os os.environ[' import numpy as np import tensorflow as tf # create dataset x_data = np.random.rand(100).astype(np.float32) y_data = x_data * 2 + 5 ### create tensorflow structure St…
bilibili莫烦scikit-learn视频学习笔记 1.使用KNN对iris数据分类 from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # 从datasets中导入iris数据,包含150条样本,每条样本4个feature iris_data = datasets.load_i…
莫烦视频网址 这个代码实现了预测和可视化 import os # third-party library import torch import torch.nn as nn import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt # torch.manual_seed() # reproducible # Hyper Parameters EPOCH = # train the tra…
各种优化器的比较 莫烦的对各种优化通俗理解的视频 import torch import torch.utils.data as Data import torch.nn.functional as F from torch.autograd import Variable import matplotlib.pyplot as plt # 超参数 LR = 0.01 BATCH_SIZE = EPOCH = # 生成假数据 # torch.unsqueeze() 的作用是将一维变二维,torc…
import torch from torch.autograd import Variable import matplotlib.pyplot as plt torch.manual_seed() # fake data x = torch.unsqueeze(torch.linspace(-,,),dim=) y = x.pow() + 0.2 * torch.rand(x.size()) x, y = Variable(x,requires_grad=False), Variable(y…