Deep Learning: Assuming a deep neural network is properly regulated, can adding more layers actually make the performance degrade? I found this to be really puzzling. A deeper NN is supposed to be more powerful or at least equal to a shallower NN. I…
[论文标题]Automatic recommendation technology for learning resources with convolutional neural network (2016 ISET) [论文作者]Xiaoxuan Shen, Baolin Yi*, Zhaoli Zhang,Jiangbo Shu, and Hai Liu [论文链接]Paper(5-pages // Double column) <札记非FY> [摘要] 自动学习资源推荐已经成为一个越来…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Gradient Checking Welcome to the final assignment for this week! In this assignment you will learn to implement and use gradient checking. You are part of a team working to make mobile payments available globally, and…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving Deep Neural Networks". Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a serious problem, if the training dataset is not big enough. Sure it do…
第一周:深度学习引言(Introduction to Deep Learning) 欢迎(Welcome) 深度学习改变了传统互联网业务,例如如网络搜索和广告.但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注. 深度学习做的非常好的一个方面就是读取 X 光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其它一些方面.如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作,本课程将帮助你做到这一点.当你完成 cousera 上面的这一系列专项课…
Train/Dev/Test set Bias/Variance Regularization  有下面一些regularization的方法. L2 regularation drop out data augmentation(翻转图片得到一个新的example), early stopping(画出J_train 和J_dev 对应于iteration的图像) L2 regularization: Forbenius Norm. 上面这张图提到了weight decay 的概念 Weigh…
声明:所有内容来自coursera,作为个人学习笔记记录在这里. 请不要ctrl+c/ctrl+v作业. Optimization Methods Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can spee…
Week 3 Quiz - Shallow Neural Networks(第三周测验 - 浅层神经网络) \1. Which of the following are true? (Check all that apply.) Notice that I only list correct options(以下哪一项是正确的?只列出了正确的答案) [ ]…
Tuning process 下图中的需要tune的parameter的先后顺序, 红色>黄色>紫色,其他基本不会tune. 先讲到怎么选hyperparameter, 需要随机选取(sampling at random) 随机选取的过程中,可以采用从粗到细的方法逐步确定参数 有些参数可以按照线性随机选取, 比如 n[l] 但是有些参数就不适合线性的sampling at radom, 比如 learning rate α,这时可以用 log Andrew 很幽默的讲到了两种选参数的实际场景…
深度网络结构是由多个单层网络叠加而成的,而常见的单层网络按照编码解码情况可以分为下面3类: 既有encoder部分也有decoder部分:比如常见的RBM系列(由RBM可构成的DBM, DBN等),autoencoder系列(以及由其扩展的sparse autoencoder, denoise autoencoder, contractive autoencoder, saturating autoencoder等). 只包含decoder部分:比如sparse coding, 和今天要讲的de…
Gradient descent Batch Gradient Decent, Mini-batch gradient descent, Stochastic gradient descent 还有很多比gradient decent 更优化的算法,在了解这些算法前,需要先理解  Exponentially weighted averages 这个概念 Exponentially weighted average 是一种计算平均值的方法,非常省storage 和 memory, 但是不是很精确.…
很久没有写总结了,这篇博客仅作为最近的一些尝试内容,记录一些心得.FFM的优势是可以处理高维稀疏样本的特征组合,已经在无数的CTR预估比赛和工业界中广泛应用,此外,其也可以与Deep Networks结合(如DeepFM等工作),很好地应用在数据规模足够大的工业场景中.Recurrent Entity Network是facebook AI在2017年的ICLR会议上发表的,文章提出了Recurrent Entity Network的模型用来对world state进行建模,根据模型的输入对记忆…
论文Network in network (ICLR 2014)是对传统CNN的改进,传统的CNN就交替的卷积层和池化层的叠加,其中卷积层就是把上一层的输出与卷积核(即滤波器)卷积,是线性变换,然后再加上一个非线性变换的激活函数(比如:relu),但是在NIN中并有像CNN中这样, 1.它们的区别之一是卷积层不一样: CNN: 卷积层= 卷积+激活函数 NIN:卷积层=mlpconv层= 卷积+MLP = 卷积+1*1卷积+1*1卷积=卷积+relu+1*1卷积+relu+1*1卷积+relu…
这学期一直在跟进 Coursera上的 Machina Learning 公开课, 老师Andrew Ng是coursera的创始人之一,Machine Learning方面的大牛.这门课程对想要了解和初步掌握机器学习的人来说是不二的选择.这门课程涵盖了机器学习的一些基本概念和方法,同时这门课程的编程作业对于掌握这些概念和方法起到了巨大的作用. 课程地址 https://www.coursera.org/learn/machine-learning 笔记主要是简要记录下课程内容,以及MATLAB…
Coursera课程<Neural Networks and Deep Learning> deeplearning.ai Week1 Introduction to deep learning What is a Neural Network? 让我们从一个房价预测的例子开始讲起. 假设你有一个数据集,它包含了六栋房子的信息.所以,你知道房屋的面积是多少平方英尺或者平方米,并且知道房屋价格.这时,你想要拟合一个根据房屋面积预测房价的函数. 如果使用线性回归进行拟合,那么可以拟合出一条直线.但…
前言 训练神经网络模型时,如果训练样本较少,为了防止模型过拟合,Dropout可以作为一种trikc供选择.Dropout是hintion最近2年提出的,源于其文章Improving neural networks by preventing co-adaptation of feature detectors.中文大意为:通过阻止特征检测器的共同作用来提高神经网络的性能.本篇博文就是按照这篇论文简单介绍下Dropout的思想,以及从用一个简单的例子来说明该如何使用dropout. 基础知识:…
Deep Learning in a Nutshell: Core Concepts This post is the first in a series I’ll be writing for Parallel Forall that aims to provide an intuitive and gentle introduction todeep learning. It covers the most important deep learning concepts and aims…
[面向代码]学习 Deep Learning(二)Deep Belief Nets(DBNs) http://blog.csdn.net/dark_scope/article/details/9447967 分类: 机器学习2013-07-24 11:50 517人阅读 评论(5) 收藏 举报 目录(?)[-] DBNdbnsetupm DBNdbntrainm DBNrbmtrainm DBNdbnunfoldtonnm 总结 =================================…
深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的研究.含多隐层的多层感知器就是一种深度学习结构.深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示. Deep learning本身算是machine learning的一个分支,简单可以理解为neural network的发展.大约二三十年前,neural n…
About this Course If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "s…
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as shown in Figure 2-11. In the figure, d i is the correct output of the output node i. Long story short, the delta rule adjusts the weight as the follow…
Neural Networks and Deep Learning This is the first course of the deep learning specialization at Coursera which is moderated by moderated by DeepLearning.ai. The course is taught by Andrew Ng. Introduction to deep learning Be able to explain the maj…
What's the most effective way to get started with deep learning?       29 Answers     Yoshua Bengio, My lab has been one of the three that started the deep learning approach, back in 2006, along with Hinton's... Answered Jan 20, 2016   Originally Ans…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…
转自:http://www.jeremydjacksonphd.com/category/deep-learning/ Deep Learning Resources Posted on May 13, 2015   Videos Deep Learning and Neural Networks with Kevin Duh: course page NY Course by Yann LeCun: 2014 version, 2015 version NIPS 2015 Deep Learn…
从13年11月初开始接触DL,奈何boss忙or 各种问题,对DL理解没有CSDN大神 比如 zouxy09等 深刻,主要是自己觉得没啥进展,感觉荒废时日(丢脸啊,这么久....)开始开文,即为记录自己是怎么一步一个逗比的走过的路的,也为了自己思维更有条理.请看客,轻拍,(如果有错,我会立马改正,谢谢大家的指正.==!其实有人看没人看都是个问题.哈哈) 推荐 tornadomeet 的博客园学习资料 http://www.cnblogs.com/tornadomeet/category/4976…
Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intuitive and gentle introduction to deep learning that does not rely heavily on math or theoretical constructs. The first part in this series provided an…
Top Deep Learning Projects A list of popular github projects related to deep learning (ranked by stars). Last Update: 2016.08.09 Project Name Stars Description TensorFlow 29622              Computation using data flow graphs for scalable machine lear…
HOME ABOUT CONTACT SUBSCRIBE VIA RSS   DEEP LEARNING FOR ENTERPRISE Distributed Deep Learning, Part 1: An Introduction to Distributed Training of Neural Networks Oct 3, 2016 3:00:00 AM / by Alex Black and Vyacheslav Kokorin Tweet inShare27   This pos…