hadoop学习日志】的更多相关文章

Hadoop思想之源:Google 面对的数据和计算难题 ——大量的网页怎么存储 ——搜索算法 带给我们的关键技术和思想 ——GFS ——Map-Reduce ——Bigtable Hadoop创始人介绍: Hadoop作者Doug cutting,就职Yahoo期间开发了Hadoop项目,目前在CLoudera公司从事架构工作.他不但是Hadoop项目的发起人,还是Lucene.Nutch项目的发起人. Hadoop简介: ——名字来源于Hadoop之父Doug Cutting儿子的玩具大象.…
资料来源 : http://www.tutorialspoint.com/hadoop/hadoop_enviornment_setup.htm Hadoop 安装 创建新用户 $ su password: # useradd hadoop -g root # passwd hadoop New passwd: Retype new passwd 修改/etc/sudoers 赋予sudo 权限 设置ssh SSH Setup and Key Generation SSH setup is re…
转载自http://www.cnblogs.com/edisonchou/p/4288737.html Hadoop学习笔记—5.自定义类型处理手机上网日志 一.测试数据:手机上网日志 1.1 关于这个日志 假设我们如下一个日志文件,这个文件的内容是来自某个电信运营商的手机上网日志,文件的内容已经经过了优化,格式比较规整,便于学习研究. 该文件的内容如下(这里我只截取了三行): 1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.1…
MapReduce编程模型 在Google的一篇重要的论文MapReduce: Simplified Data Processing on Large Clusters中提到,Google公司有大量的诸如Web请求日志.爬虫抓取的文档之类的数据需要处理,由于数据量巨大,只能将其分散在成百上千台机器上处理,如何处理并行计算.如何分发数据.如何处理错误,所有这些问题综合在一起,需要大量的代码处理,因此也使得原本简单的运算变得难以处理. 为了解决上述复杂的问题,Google设计一个新的抽象模型,使用这…
1. Hadoop FS Shell Hadoop之所以可以实现分布式计算,主要的原因之一是因为其背后的分布式文件系统(HDFS).所以,对于Hadoop的文件操作需要有一套全新的shell指令来完成,而这就是Hadoop FS Shell.它主要是用于对Hadoop平台进行文件系统的管理. 有关HDFS的介绍博客请移步:Hadoop学习笔记之Hadoop基础. 有关Hadoop FS Shell的学习文档:Hadoop FS Shell学习文档. 2. Hadoop Streaming 我们知…
Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘.开源界及厂商,所有数据软件,无一不向Ha…
Hadoop学习总结之五:Hadoop的运行痕迹   Hadoop 学习总结之一:HDFS简介 Hadoop学习总结之二:HDFS读写过程解析 Hadoop学习总结之三:Map-Reduce入门 Hadoop学习总结之四:Map-Reduce的过程解析 在使用hadoop的时候,可能遇到各种各样的问题,然而由于hadoop的运行机制比较复杂,因而出现了问题的时候比较难于发现问题. 本文欲通过某种方式跟踪Hadoop的运行痕迹,方便出现问题的时候可以通过这些痕迹来解决问题. 一.环境的搭建 为了能…
关于大数据,一看就懂,一懂就懵. 一.概述 本文介绍如何搭建hadoop分布式集群环境,前面文章已经介绍了如何搭建hadoop单机环境和伪分布式环境,如需要,请参看:大数据Hadoop学习之搭建hadoop平台(2.1).hadoop独立环境和伪分布式环境都无法发挥hadoop的价值,若想利用hadoop进行一些有价值的工作,必须搭建hadoop分布式集群环境. 下文以三台虚拟机为基础搭建集群环境,系统版本为CentOS-7,虚拟机地址分别为:192.168.1.106.192.168.1.10…
要想发挥Hadoop分布式.并行处理的优势,还须以分布式模式来部署运行Hadoop.单机模式是指Hadoop在单个节点上以单个进程的方式运行,伪分布模式是指在单个节点上运行NameNode.DataNode.JobTracker.TaskTracker.SeconderyNameNode5个进程,而分布式模式是指在不同节点上分别运行上述5个进程中的某几个,比如在某个节点上运行DataNode和TaskTracker. 前面几步和单机部署一样,可以参照Hadoop学习------Hadoop安装方…
周旭龙前辈的Hadoop学习笔记—网站日志分析项目案例简明.经典,业已成为高校大数据相关专业的实验项目.上周博主也完成了这个实验,不同于周前辈使用特殊符号切割字符串得到数据的做法,博主使用了正则表达式来匹配数据.在此将我的思路及代码张贴出来,以供后来者学习借鉴. 一.数据情况分析 1.1.数据格式概览 本次实验数据来自于国内某论坛,数据以行为单位,每行记录由5部分组成,访问者IP.访问时间.访问资源.访问状态.访问流量. 1.2.所需的数据 按照实验教程,我们只需要IP.时间.uri即可,不过本…
Hadoop学习笔记(10) ——搭建源码学习环境 上一章中,我们对整个hadoop的目录及源码目录有了一个初步的了解,接下来计划深入学习一下这头神象作品了.但是看代码用什么,难不成gedit?,单步调试呢? 看程序不能调那多痛苦啊,想看跟踪一下变量,想看一下执行路径都难. 所以这里,我们得把这个调试环境搭建起来.Hadoop的主要代码是用java编写的,所以这里就选用eclipse作为环境. Hadoop目录下,本身就可以为作eclipse的一个工程来操作,但这里我不想,我想自己来建一个工程,…
Hadoop学习笔记(9) ——源码初窥 之前我们把Hadoop算是入了门,下载的源码,写了HelloWorld,简要分析了其编程要点,然后也编了个较复杂的示例.接下来其实就有两条路可走了,一条是继续深入研究其编程及部署等,让其功能使用的淋漓尽致.二是停下来,先看看其源码,研究下如何实现的.在这里我就选择第二条路. 研究源码,那我们就来先看一下整个目录里有点啥: 这个是刚下完代码后,目录列表中的内容. 目录/文件 说明 bin 下面存放着可执行的sh命名,所有操作都在这里 conf 配置文件所在…
Hadoop学习笔记系列   一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Had…
(实践机器:blog-bench) 本文用作博文<Hadoop学习之路>实践过程中遇到的问题记录. 本文所学习的博文为博主“扎心了,老铁” 博文记录.参考链接https://www.cnblogs.com/qingyunzong/category/1169344.html 问题一: <Hadoop学习之路(四)Hadoop集群搭建和简单应用>执行start-dfs.sh时,报错3个: 1. 报错现象: 原因:hadoop默认ssh采用的是22端口号,但是我们公司内部机器为了安全已修…
本文原创,转载注明作者和原文链接! 一:总结注意点: 到现在为止学习到的角色:三个NameNode.SecondaryNameNode.DataNode 1.存储的是每一个文件分割存储之后的元数据信息.具体的信息有: 2.而且NameNode的存储是内存存储的,不会有和磁盘的数据交换的过程,这样的话提高了整体的集群的效率,但是这个数据都是需要持久化的,因为不持久化的话,数据是不安全的,加假如哪一天hadoop集群中的NameNode那台服务器挂了的话,里面的元数据如果只是存储在内存中的就全部的丢…
大数据这个词越来越热,本人一直想学习一下,正巧最近有时间了解一下.先从hadoop入手,在此记录学习中的点滴. 什么是hadoop? What Is Apache Hadoop? The Apache™ Hadoop® project develops open-source software for reliable, scalable, distributed computing 作者:Doug Cutting 受Google三篇论文的启发(GFS.MapReduce.BigTable) 解…
期望 通过这个mapreduce程序了解mapreduce程序执行的流程,着重从程序解执行的打印信息中提炼出有用信息. 执行前 程序代码 程序代码基本上是<hadoop权威指南>上原封不动搬下来的,目的为求出某一年份中最高气温,相关代码如下: public class NcdcWeather { private String USAF_station_id; private String WBAN_station_id; private String date; private String…
本文基于Hadoop1.X 概述 分布式文件系统主要用来解决如下几个问题: 读写大文件 加速运算 对于某些体积巨大的文件,比如其大小超过了计算机文件系统所能存放的最大限制或者是其大小甚至超过了计算机整个硬盘的容量的文件,这时需要将文件分割为若干较小的块,然后将这些块按照一定的规则分放在集群中若干台节点计算机里. 分布式文件系统的另一个作用是加速运算,在多台计算机上对每个子文件进行计算最后再汇总结果通常比在一台计算机上处理大量文件的运算要块.这种分而治之的思想倡导:与其追求造价昂贵的高性能计算机,…
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔记系列>.其实,早在2014年Hadoop2.x版本就已经开始流行了起来,并且已经成为了现在的主流.当然,还有一些非离线计算的框架如实时计算框架Storm,近实时计算框架Spark等等.相信了解Hadoop2.x的童鞋都应该知道2.x相较于1.x版本的更新应该不是一丁半点,最显著的体现在两点: (1)H…
一.HDFS出现的背景 随着社会的进步,需要处理数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是却不方便管理和维护—>因此,迫切需要一种系统来管理多台机器上的文件,于是就产生了分布式文件管理系统,英文名成为DFS(Distributed File System). 那么,什么是分布式文件系统?简而言之,就是一种允许文件通过网络在多台主机上分享的文件系统,可以让多个机器上的多个用户分享文件和存储空间.它最大的特点是“通透性”,DFS让实际上是通过网络来…
想把hadoop的进程日志导入hive表进行分析,遂做了以下的尝试. 关于hadoop进程日志的解析 使用正则表达式获取四个字段,一个是日期时间,一个是日志级别,一个是类,最后一个是详细信息, 然后在hive中建一个表,可以用来方便查询. 2015-12-18 22:23:23,357 INFO org.apache.hadoop.yarn.server.nodemanager.containermanager.monitor.ContainersMonitorImpl: Memory usag…
在Hadoop1(版本<=0.22)中,由于NameNode和JobTracker存在单点中,这制约了hadoop的发展,当集群规模超过2000台时,NameNode和JobTracker已经不堪重负.于是,全新架构的hadoop2(版本>=0.23)诞生了,可以支持分布式NameNode.NameNode HA(NameNode High Available),实现了NameNode的横向扩展,使得集群规模最大可支持上万个节点. 一.Hadoop2介绍 1.Hadoop1局限性  NameN…
发现开博客园真的很有督促作用,今天也顺便开个GRE学习日志吧 2015-02-09:单词 2015-02-10:单词 2015-02-11:单词 2015-03-02:阅读 2015-03-04:阅读,填空,作文 2015-03-05: 阅读 2015-03-18:到现在每天都是刷题…
深入剖析HADOOP程序日志 前提 本文来自于 博客园 逖靖寒的世界 http://gpcuster.cnblogs.com 了解log4j的使用. 正文 本文来自于 博客园 逖靖寒的世界 http://gpcuster.cnblogs.com *.log日志文件和*.out日志文件 进入我们的Hadoop_LOG目录,我们可以看到如下文件: 在启动Hadoop集群时,由hadoop-daemon.sh脚本指定一些列环境变量,然后log4j.properties文件读取相应的环境变量产生对应的*…
Hadoop学习笔记(7) ——高级编程 从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤: 1.输入(input):将输入数据分成一个个split,并将split进一步拆成<key, value>. 2.映射(map):根据输入的<key, value>进生处理, 3.合并(combiner):合并中间相两同的key值. 4.分区(Partition):将<key, value>分成N分,分别送到下一环节. 5.化简(Reduce):将中间结…
Hadoop学习笔记(6) ——重新认识Hadoop 之前,我们把hadoop从下载包部署到编写了helloworld,看到了结果.现是得开始稍微更深入地了解hadoop了. Hadoop包含了两大功能DFS和MapReduce, DFS可以理解为一个分布式文件系统,存储而已,所以这里暂时就不深入研究了,等后面读了其源码后,再来深入分析. 所以这里主要来研究一下MapReduce. 这样,我们先来看一下MapReduce的思想来源: alert("I'd like some Spaghetti!…
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha…
Hadoop学习笔记(5) ——编写HelloWorld(2) 前面我们写了一个Hadoop程序,并让它跑起来了.但想想不对啊,Hadoop不是有两块功能么,DFS和MapReduce.没错,上一节我们写了一个MapReduce的HelloWorld程序,那这一节,我们就也学一学DFS程序的编写. DFS是什么,之前已经了解过,它是一个分布式文件存储系统.不管是远程或本地的文件系统,其实从接口上讲,应该是一至的,不然很难处理.同时在第2节的最后,我们列出了很多一些DFS的操作命令,仔细看一下,这…
Hadoop学习笔记(3) ——分布式环境搭建 前面,我们已经在单机上把Hadoop运行起来了,但我们知道Hadoop支持分布式的,而它的优点就是在分布上突出的,所以我们得搭个环境模拟一下. 在这里,我们采用这样的策略来模拟环境,我们使用3台ubuntu机器,1台为作主机(master),另外2台作为从机(slaver).同时,这台主机,我们就用第一章中搭建好的环境来. 我们采用与第一章中相似的步骤来操作: 运行环境搭建 在前面,我们知道,运行hadoop是在linux上运行的.所以我们单机就在…
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha…