颜色(Colors): 基础颜色: character color 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white 此外,matplotlib也支持HTML颜色,可参考:http://www.runoob.com/html/html-colorvalues.html. (注:可直接上网搜索 ”HTML color names“) 也可用命令将其调出: import matplotlib…
Matplotlib有两种接口,一种是matlab风格接口,一种是面向对象接口.在这里,统一使用面向对象接口.因为面向对象接口可以适应更复杂的场景,在多图之间进行切换将变得非常容易. 首先导入matplotlib:from matplotlib import pyplot as plt.plt是最常用的接口. 一. 创建图像和坐标轴 fig=plt.figure()   ---   创建图像 ax=plt.axes()   ---   创建坐标轴 在matplotlib中,可以把figure看成…
在图形表示中,不同的画布或画布中不同的函数,我们常常要用不同的形状或颜色来区分开,这里小编向大家介绍这些参数的表示方法: 一.控制颜色 b--blue             c--cyan(青色)          g--green         k--black m--magenta(紫红色)      r--red            w--white          y--yellow 颜色有三种表示方法,可以用全名,也可以用16进制,也可用RGB或RGBA元组 二.控制线型 -…
原   matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { backg…
matplotlib 是Python下的一个高质量的画图库,可以简单的类似于MATLAB方法构建高质量的图表. 原始文章地址:http://zanyongli.i.sohu.com/blog/view/195717824.htm 学习心得: 笔记参照<用Python做科学计算>的matplotlib部分. 凡例:a. [float]表示对象类型是float,用时不用加'['和']'.b. 代码中的跳格表示换行. Chap 5 matplotlib-绘制精美的图表 1. artist对象的set…
原  Matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { backgr…
1.简介 matplotlib是python的一个2D绘图库,它可以在不同平台上地使用多种通用的绘图格式(hardcopy formats)和交互环境绘制出出版物质量级别的图片.matplotlib可以通过python脚本,python/ipython shell,web application servers以及six图像用户接口工具箱来调用. 其官方地址:http://matplotlib.org/index.html 2.使用案例 2.1 绘制决策树*  *该代码来自于<机器学习实战>…
在机器学习中,经常要用scikit-learn里面的线性回归模型来对数据进行拟合,进而找到数据的规律,从而达到预测的目的.用图像展示数据及其拟合线可以非常直观地看出拟合线与数据的匹配程度,同时也可用于后续的解释和阐述工作. 这里利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/unemployment-rate-1948-2010.csv 准备工作:先导入matplotlib和pand…
箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分别为数据的第25%,50%和75%的数字. I-------------I o I-------------I o I-------------I o I-------------I Q1                Q2                 Q3 (lower quartile) …
我在网上随便找了一组数据,用它来学习画图.大家可以直接把下面的数据复制到excel里,然后用pandas的read_excel命令读取.或者直接在脚本里创建该数据. 饼图: ax.pie(x,labels=...,explode=...) 代码如下: import numpy as np import matplotlib from matplotlib import pyplot as plt matplotlib.rcParams['font.sans-serif']='Microsoft…