Deep Neural Network - Application Congratulations! Welcome to the fourth programming exercise of the deep learning specialization. You will now use everything you have learned to build a deep neural network that classifies cat vs. non-cat images. In…
第三周:浅层神经网络(Shallow neural networks) 3.1 神经网络概述(Neural Network Overview) 使用符号$ ^{[…
Residual Networks Welcome to the second assignment of this week! You will learn how to build very deep convolutional networks, using Residual Networks (ResNets). In theory, very deep networks can represent very complex functions; but in practice, the…
论文笔记之:Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning  2017-06-06  21:43:53  这篇文章的 Motivation 来自于 MDNet: 本文所提出的 framework 为:…
树卷积神经网络Tree-CNN: A Deep Convolutional Neural Network for Lifelong Learning 2018-04-17 08:32:39 看_这是一群菜鸟 阅读数 1906  收藏 更多 分类专栏: 论文解读   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/qq_24305433/article/details/79856672 一.…
  Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/adeshpande3.github.io/Deep-Learning-Research-Review-Week-2-Reinforcement-Learning This is the 2nd installment of a new series called Deep Learning Resea…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Ref: 神经网络训练中的Tricks之高效BP (反向传播算法) 关于梯度下降的东西,涉及的知识很多,有必要单独一章 Lecture 06 —— mini批量梯度训练及三个加速的方法 (详见链接) 一.mini-批量梯度下降概述 这部分将介绍使用随机梯度下降(SGD)学习来训练NN,着重介绍mini-批量版本,而这个也是现今用的最广泛的关于训练大…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记1 Link: Hinton的CSC321课程笔记2 一年后再看课程,亦有收获,虽然看似明白,但细细推敲其实能挖掘出很多深刻的内容:以下为在线课程以及该笔记的课程重难点总结. Lecture 01 增强学习: (这是ng的拿手好戏,他做无人直升机可是做了好久)增强学习的输出是一个动作或者一系列的动作,通过与实际的场合下的环境互动来决定动作,增强学习的…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 补充: 参见cs231n 2017版本,ppt写得比过去更好. [译] 理解 LSTM 网络:模块内部解析讲得不错. Lecture 07 Lecture 08 完全递归网络(Fully recurrent network) Hopfield网络(Hopfield network) Elman networks and Jordan network…
Link: Neural Networks for Machine Learning - 多伦多大学 Link: Hinton的CSC321课程笔记 Lecture 09 Lecture 10 提高泛化能力 介绍不同的方法去控制网络的数据表达能力,并介绍当我们使用这样一种方法的时候如何设置元参数,然后给出一个通过提早结束训练来控制网络能力(其实就是防止过拟合)的例子. 所以我们需要方法来阻止过拟合, 第一个方法也是目前最好的方法:就是简单的增加更多的数据,如果你能提供更多的数据,那么就不需要去提…
今天给大家带来一篇来自CVPR 2017关于人脸识别的文章. 文章题目:Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, and 摘要: 文章动机:人脸识别在一个没有约束的环境下,在计算机视觉中是一个非常有挑战性的问题.同一个身份的人脸当呈现不同的装饰,不同的姿势和不同的表情都可以使人脸看起来完全不同.这种相同身份的变化可以压倒不同身份的变化,这样给人脸识别带来更大的挑战,特别是在没有约束的环境下.…
R. Amiri, M. A. Almasi, J. G. Andrews and H. Mehrpouyan, "Reinforcement Learning for Self Organization and Power Control of Two-Tier Heterogeneous Networks," in IEEE Transactions on Wireless Communications, vol. 18, no. 8, pp. 3933-3947, Aug. 20…
论文信息 论文标题:Towards Robust False Information Detection on Social Networks with Contrastive Learning论文作者:Chunyuan Yuan, Qianwen Ma, Wei Zhou, Jizhong Han, Songlin Hu论文来源:2019,CIKM论文地址:download 论文代码:download 1 Introduction 问题:会话图中轻微的扰动讲导致现有模型的预测崩溃. 研究了两大…
论文阅读: DIVIDEMIX: LEARNING WITH NOISY LABELS AS SEMI-SUPERVISED LEARNING 作者说明 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 原文链接:凤尘 >>https://www.cnblogs.com/phoenixash/p/15369008.html 基本信息 \1.标题:DIVIDEMIX: LEARNING WITH NOISY LABELS AS SEMI-SUP…
Deep Neural Network Getting your matrix dimention right 选hyper-pamameter 完全是凭经验 补充阅读: cost 函数的计算公式: 求导公式…
Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the dimensionality reduction of a volume in a very deep network Understand and Implement a Residual network Build a deep neural network using Keras Implem…
本文重点: 和一般形式的文本处理方式一样,并没有特别大的差异,文章的重点在于提出了一个相似度矩阵 计算过程介绍: query和document中的首先通过word embedding处理后获得对应的表示矩阵 利用CNN网络进行处理获得各自的feature map,接着pooling后获得query对应的向量表示Xq和document的向量Xd 不同于传统的Siamense网络在这一步利用欧式距离或余弦距离直接对Xq和Xd进行相似性计算后预测结果,网络采用一个相似矩阵来计算Xq和Xd的相似度,然后…
2006年,机器学习泰斗.多伦多大学计算机系教授Geoffery Hinton在Science发表文章,提出基于深度信念网络(Deep Belief Networks, DBN)可使用非监督的逐层贪心训练算法,为训练深度神经网络带来了希望.如果说Hinton 2006年发表在<Science>杂志上的论文[1]只是在学术界掀起了对深度学习的研究热潮,那么近年来各大巨头公司争相跟进,将顶级人才从学术界争抢到工业界,则标志着深度学习真正进入了实用阶段,将对一系列产品和服务产生深远影响,成为它们背后…
In this lesson, you'll dive deeper into the intuition behind Logistic Regression and Neural Networks. You'll also implement gradient descent and backpropagation in python right here in the classroom. 我们以这条线为模型,每当接到新的学生申请,我们把他们的成绩画在坐标图上 如果数据点是在这条线的上方,…
Keras tutorial - the Happy House Welcome to the first assignment of week 2. In this assignment, you will: Learn to use Keras, a high-level neural networks API (programming framework), written in Python and capable of running on top of several lower-l…
self-taught learning 在特征提取方面完全是用的无监督的方法,对于有标记的数据,可以结合有监督学习来对上述方法得到的参数进行微调,从而得到一个更加准确的参数a. 在self-taught learning中,首先用 无标记数据训练一个sparse autoencoder,这样用对于原始输入x,经过sparse autoencoder得到隐层特征a: 这样对于分类问题,目标是预测样本的类别标号 .现在的标注数据集 ,包含  个标注样本.此前已经说明,可以利用稀疏自编码器获得的特征…
一. 引出主题¶ 深度学习领域一直存在一个比较严重的问题——“灾难性遗忘”,即一旦使用新的数据集去训练已有的模型,该模型将会失去对原数据集识别的能力.为解决这一问题,本文提出了树卷积神经网络,通过先将物体分为几个大类,然后再将各个大类依次进行划分.识别,就像树一样不断地开枝散叶,最终叶节点得到的类别就是我们所要识别的类. 二.网络结构及学习策略¶ 1. 网络结构 Tree-CNN模型借鉴了层分类器,树卷积神经网络由节点构成,和数据结构中的树一样,每个节点都有自己的ID.父亲(Parent)及孩子…
[解释] 应该是same padding 而不是 valid padding . [解释] 卷积操作用的应该是adding additional layers to the network ,而是应该添加跳跃连接(Skip connection). [解释] 这一题感觉四个选项都是对的,但是提交答案的时候,显示答案有错误.欢迎留言讨论. ---------------------------------------------------------- 参考链接: 1.https://www.c…
self-taught learning 在特征提取方面完全是用的无监督的方法,对于有标记的数据,可以结合有监督学习来对上述方法得到的参数进行微调,从而得到一个更加准确的参数a. 在self-taught learning中,首先用 无标记数据训练一个sparse autoencoder,这样用对于原始输入x,经过sparse autoencoder得到隐层特征a: 这样对于分类问题,目标是预测样本的类别标号 .现在的标注数据集 ,包含  个标注样本.此前已经说明,可以利用稀疏自编码器获得的特征…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 原文链接:https://arxiv.org/pdf/2005.05941.pdf Contents: Abstract Introduction 1 Reinforcement learning with a network of spiking agents 2 Related Work 2.0.1 Hedonism 2.0.2 Learning by reinforcement in spiking neural network…
Lecture 11 — Hopfield Nets Lecture 12 — Boltzmann machine learning Ref: 能量模型(EBM).限制波尔兹曼机(RBM) 高大上的模型和理论. Hopfield Nets 看了能量函数,发现: These look very much like the weights and biases of a neural network. [点到为止] Boltzmann machine learning From: A Beginne…
机器学习能良好解决的问题 识别模式 识别异常 预測 大脑工作模式 人类有个神经元,每一个包括个权重,带宽要远好于工作站. 神经元的不同类型 Linear (线性)神经元  Binary threshold (二值)神经元  watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" width="300&quo…
题目翻译:学习 local feature descriptors 使用 triplets 还有浅的卷积神经网络.读罢此文,只觉收获满满,同时另外印象最深的也是一个浅(文章中会提及)字. 1 Contribution 这篇论文主要做的贡献有: 提出了一种复杂度更小的triplets,更浅,计算度复杂小,表现也很好. 并且借助一种 in-triplet mining的训练方法,降低了挖掘hard negatives的复杂度提高了表现. 论文还介绍了两种不同的loss function在不同的任务下…
Learning Goals Understand the convolution operation Understand the pooling operation Remember the vocabulary used in convolutional neural network (padding, stride, filter, ...) Build a convolutional neural network for image multi-class classification…
原文链接:http://blog.csdn.net/xizero00/article/details/51225065 一.论文所解决的问题 现有的关于RNN这一类网络的综述太少了,并且论文之间的符号并不统一,本文就是为了RNN而作的综述 二.论文的内容 (0)整体一览 由前馈神经网络->RNN的早期历史以及发展->现代RNN的结构->现代RNN的应用 (1)前馈神经网络   图1 一个神经元     图2 一个神经网络 传统的前馈神经网络虽然能够进行分类和回归,但是这些都是假设数据之间…