[BZOJ4316]小C的独立集(圆方树DP)】的更多相关文章

题意:求仙人掌图直径. 算法:建出仙人掌圆方树,对于圆点直接做普通的树上DP(忽略方点儿子),方点做环上DP并将值直接赋给父亲. 建图时有一个很好的性质,就是一个方点在邻接表里的点的顺序正好就是从环的根开始的整个环的点的顺序,所以可以直接DP. #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=l; i<=r; i++) using namespace std; ,inf=; int n,m,…
题意:仙人掌图最短路. 算法:圆方树DP,$O(n\log n+Q\log n)$ 首先建出仙人掌圆方树(与点双圆方树的区别在于直接连割边,也就是存在圆圆边),然后考虑点u-v的最短路径,显然就是:在圆方树上u-v的路径上的所有边权之和,加上每个环(方点)中连出去的两个点的最短距离. 现在问题就是:如何求出环上两个点的最短路径.考虑这样设定边权,首先显然圆圆边的边权就是原图的边权,然后设一个环在搜索树中深度最小的点为这个环的根,则方圆边的边权是环的根到这个点的最短距离,这个可以在Tarjan的时…
Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点的回路. 举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路: (4,3,2,1,6,5,4).(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4), 而(2,3)同时出现在前两个的简单回路里.另外,第三张图也不是仙人图,因为它并不是连通图…
题意:给出一张图,求满足存在一条从u到v的长度大于3的简单路径的有序点对(u,v)个数. 做了上一题[HDU5739]Fantasia(点双连通分量+DP),这个题就是一个NOIP题了. 一开始考虑了各种各样的情况,最后发现几乎没有什么特殊情况,程序很优美. 首先和上一题一样建出圆方树,然后如果选择了点对(a,c),那么b一定在树上a到c的路径上. 给树上每个BCC点权为这个BCC的大小,普通点点权设为-1,那么答案就是所有起点终点均为普通点的路径的权值和.直接树形DP即可. #include<…
题意:给一张无向点带有权无向图.定义连通图的权值为图中各点权的乘积,图的权值为其包含的各连通图的权和.设z_i为删除i点后图的权值,求$S = (\sum\limits_{i=1}^{n}i\cdot z_i) \text{ mod } (10^9 + 7)$. 显然和点双有关.回忆各种tarjan:缩SCC得DAG,缩边BCC得一棵树,我们要想办法把点BCC也缩成一棵树. tarjan求点双,然后给每个点双新建一个点,将这个BCC内的所有点连向这个点. 因为点与点之间没有边,SCC与SCC之间…
QWQ神仙题啊(据说是今年第一次出现圆方树的地方) 首先根据题目,我们就是求对于每一个路径\((s,t)\)他的贡献就是两个点之间的点数,但是图上问题我并没有办法很好的解决... 这时候考虑圆方树,我们将圆方树建出来之后, 我们令方点的权值是他所连接的圆点之和,圆点的权值是\(-1\). 这里之所以让圆点的贡献是-1,是为了方便表示路径的贡献(不然貌似比较复杂). 如果我们这么赋值的话,那么一个条路经的贡献就应该是点权之和. QWQ可惜枚举两个端点是\(O(n^2)\)复杂度的 那么这时候,我们…
本题有两种写法,dfs树上DP和仙人掌DP. 先考虑dfs树DP. 什么是dfs树?其实是对于一棵仙人掌,dfs后形成生成树,找出非树边(即返祖边),然后dfs后每条返祖边+其所覆盖的链构成了一个环(很显然覆盖的链互不相交),然后可以确定每条边出现在哪个环中,然后可以解决一些简单的仙人掌DP问题,不用写tarjan了. 这道题的第一种方法就是dfs树DP,题目是求仙人掌的最大独立集. 首先树形DP,没有环应该很好求,有环的情况,考虑记录环上的点的top和end(注意环顶部不用记录,因为环顶部可能…
传送门 题意:给出一个仙人掌森林求其最大独立集. 思路:如果没有环可以用经典的树形dpdpdp解决. fi,0/1f_{i,0/1}fi,0/1​表示第iii个点不选/选的最大独立集. 然后fi,0+=max{fv,0,fv,1},fi,1+=fv,0f_{i,0}+=max\{f_{v,0},f_{v,1}\},f_{i,1}+=f_{v,0}fi,0​+=max{fv,0​,fv,1​},fi,1​+=fv,0​转移即可. 现在有了环考虑把每个环单独提出来更新一下. 就用个队列把整个环记录下…
orzYCB 虚树 %自为风月马前卒巨佬% 用于优化一类树形DP问题. 当状态转移只和树中的某些关键点有关的时候,我们把这些点和它们两两之间的LCA弄出来,以点的祖孙关系连成一棵新的树,这就是虚树. 容易证明,如果关键点数量为\(m\),则虚树点数不超过\(2m\). 虚树的构建 dfs原树,对点进行dfn标号,并将关键点按dfn从小到大排序. 搞个栈,栈内的点满足:都在从栈顶的点到原树的根的一条链上. 现在我们准备加入一个点\(x\) 直接加可能破坏一条链的性质,于是把栈顶的元素弹掉直到可以加…
仙人掌 && 圆方树 && 虚树 总结 Part1 仙人掌 定义 仙人掌是满足以下两个限制的图: 图完全联通. 不存在一条边处在两个环中. 其中第二个限制让仙人掌的题做起来十分舒服. 仙人掌的基环DP 首先勾出一棵有根生成树. 那么树边上正常转移即可. 我们把返祖边形成的环归到环上深度最浅的点上,即环顶. 那么到环顶时,单独跑一遍关于环的\(DP\)即可. 一般写法为: void dfs(RG int u,RG int From) { dfn[u] = low[u] = +…