11_数据降维PCA】的更多相关文章

1.sklearn降维API:sklearn. decomposition 2.PCA是什么:主成分分析 本质:PCA是一种分析.简化数据集的技术. 目的:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息. 作用:可以削减回归分析或者聚类分析中特征的数量. 当特征达到上百的时候,考虑是否要使用PCA来删除部分特征. 3.高维度数据容易出现的问题:特征之间通常是线性相关的. 4.PCA语法: PCA(n_components=None) 将数据分解为较低维数空间 n_componen…
1.什么是PCA? PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法.PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征.PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的.其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2…
PCA主成分分析 无监督学习 使方差(数据离散量)最大,更易于分类. 可以对隐私数据PCA,数据加密. 基变换 投影->内积 基变换 正交的基,两个向量垂直(内积为0,线性无关) 先将基化成各维度下的单位向量. 一般把数据写成列向量的形式,新的基写成矩阵的形式. 基×向量 R个基向量,行向量表示.R维空间内,p1...pr.p是行向量. m个样本,m列.n个特征. 将右面矩阵内每一个列向量(样本),映射到R维空间内 原来可能有n个特征,现在变成了R个特征.m个样本: 基的选择 尽可能保留原来信息…
讲授数据降维原理,PCA的核心思想,计算投影矩阵,投影算法的完整流程,非线性降维技术,流行学习的概念,局部线性嵌入,拉普拉斯特征映射,局部保持投影,等距映射,实际应用 大纲: 数据降维问题PCA的思想最佳投影矩阵向量降维向量重构实验环节实际应用 数据降维问题: 为什么需要数据降维?①高维数据不易处理,机器学习和模式识别中高维数据不太好处理,如人脸图像32*32,1024维向量,维度太高效率低.影响精度.②不能可视化,1024维是无法可视化的.③维数灾难问题,开始增加维度算法预测精度会提升,但再继…
&*&:2017/6/16update,最近几天发现阅读这篇文章的朋友比较多,自己阅读发现,部分内容出现了问题,进行了更新. 一.什么是PCA:摘用一下百度百科的解释 PCA(Principal Component Analysis),主成分分析,是一种统计方法,通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分. 二.PCA的用途及原理: 用途:数据降维 原理:线性映射(或线性变换),简单的来说就是将高维空间数据投影到低维空间上,那么在数据分析上,…
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识PCA (1)简介 数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维. 换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间.例如,将原数据向量x,通过构建  维变换矩阵 W,映射到新的k维子空间,通常().…
降维技术使得数据变得更易使用,并且它们往往能够去除数据中的噪声,使得机器学习任务往往更加精确. 降维往往作为预处理步骤,在数据应用到其它算法之前清洗数据.有很多技术可以用于数据降维,在这些技术中,独立成分分析(Independent Component Analysis, ICA).因子分析(Factor Analysis).主成分分析(Principal Component Analysis, PCA)比较流行,其中又以主成分分析应用最广泛. PCA可以从数据中识别其主要特征,它是通过沿着数据…
本笔记为Coursera在线课程<Machine Learning>中的数据降维章节的笔记. 十四.降维 (Dimensionality Reduction) 14.1 动机一:数据压缩 本小节主要介绍第二种无监督学习方法:dimensionality reduction,从而实现数据的压缩,这样不仅可以减少数据所占磁盘空间,还可以提高程序的运行速度.如下图所示的例子,假设有一个具有很多维特征的数据集(虽然下图只画出2个特征),可以看到x1以cm为单位,x2以inches为单位,它们都是测量长…
上一篇文章讲了PCA的数据原理,明白了PCA主要的思想及使用PCA做数据降维的步骤,本文我们详细探讨下另一种数据降维技术—奇异值分解(SVD). 在介绍奇异值分解前,先谈谈这个比较奇怪的名字:奇异值分解,英文全称为Singular Value Decomposition.首先我们要明白,SVD是众多的矩阵分解技术中的一种,矩阵分解方式很多,如三角分解(LU分解.LDU分解.乔列斯基分解等).QR分解及这里所说的奇异值分解:其次,singular是奇特的.突出的.非凡的意思,从分解的过程及意义来看…
前言 这部分也许是数据预处理最为关键的一个阶段. 如何对数据降维是一个很有挑战,很有深度的话题,很多理论书本均有详细深入的讲解分析. 本文仅介绍主成分分析法(PCA)和探索性因子分析法(EFA),并给出具体的实现步骤. 主成分分析法 - PCA 主成分分析(principal components analysis, PCA)是一种分析.简化数据集的技术. 它把原始数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次…