[JLOI2009]神秘的生物——轮廓线DP】的更多相关文章

原题链接 题目大意 \(n\times n\)的带权方阵,选一个权值最大的连通块 Solution 一眼连通性DP,然后就没了 转移很好想的啦,简单讨论一下就行了 有一个坑点,就是不能一个格子都不选,特判一下 注释还算详细QwQ #include <algorithm> #include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #include <…
亲手写掉的第一道最小表示法!哈哈哈太开心啦~ 不同于以往的几个插头\(dp\),这个题目的轮廓线是周围的一圈\(n\)个格子.而其所谓"插头"也变成了相邻格子的所属连通分量编号,并不是直接把前面几个题的思想往上套就可以轻松解决的了.这里我们就要采用一种叫最小表示法的东西来表示它的连通性信息啦~ (其实感觉是不是称之为逐格递推的轮廓线\(dp\)比较好... 而最小表示法是什么呢?举个例子,现在有这样一个序列\((5,5,3,2,4,1,3,2)\),序列中的每一个数代表第\(i\)个格…
题目链接 题目大意 给定一个\(n*n\)的矩阵,从其中选取恰好一个连通块,使选取的格子所对应的权值和最大. \(n\leq 9\) 解题思路 由于\(n\)特别小,考虑插头dp. 和一般的插头dp不同,这里的边界实际上是边界上的格子. 例如: 用不同的编号代表不同的连通块,相同的标号表示同一个连通块,没有选择用0表示. 这样最多会有5种不同的连通块,为了方便,可以将标号设为0~7 但是,这样转移状态可能会很多,但很显然有很多多余的状态(例如'20102'和'10201'描述的连通块本质是一样的…
补了一发轮廓线DP,发现完全没有必要从右往左设置状态,自然一点: 5 6 7 8 9 1 2 3 4 如此设置轮廓线标号,转移的时候直接把当前j位改成0或者1就行了.注意多记录些信息对简化代码是很有帮助的,尤其对于我这种代码经常错的一塌糊涂的人来说.. 呆马: POJ 3254 Corn Fields #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #…
跟上面那篇轮廓线dp是一样的,但是多了两个条件,一个是在原图上可能有些点是不能放的(即障碍),所以转移的时候要多一个判断color[i][j]是不是等于1什么的,另外一个是我们可以有多的1*1的骨牌,1*1的骨牌使用数量一定要在[c,d]之间,所以状态加多一维,转移的时候多一种情况(放1的).那么怎么初始化呢?有两种方法,一种是dp[0][0][d]=1,最后的答案的因为一定要用[c,d]之间,所以答案是dp[(t+1)&1][0][0~d-c].另外一种是dp[0][0][c~d]=1,最后答…
第一道轮廓线dp,因为不会轮廓线dp我们在南京区域赛的时候没有拿到银,可见知识点的欠缺是我薄弱的环节. 题目就是要你用1*2的多米诺骨排填充一个大小n*m(n,m<=11)的棋盘,问填满它有多少不同的方法. 一个可行的解法就是轮廓线dp. 假设我们从上往下,从左往右去填,那么我们会发现,假如我们当前填的是(i,j)格的时候,在它前面的(i',j')其实是已经确定一定填了的,所以实际上没有填的时候处于轮廓线的部分,在这里没有具体 1 1 1 1 1 1 x x x x             如上…
其实这题还能用状压DP解决,可是时间达到2000ms只能过掉POJ2411.状压DP解法详见状压DP解POJ2411 贴上POJ2411AC代码 : 2000ms 时间复杂度h*w*(2^w)*(2^w) #include <cstdio> #include <cmath> #include <algorithm> #include <cstring> #include <utility> #include <string> #inc…
题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq S}^{ }(-1)^{|T|-1}E(min(T))$ 那么只需要知道每个子集中最早得到的物品的期望时间即可得出答案. 对于每个子集,最早得到的物品的期望时间就是一次选择能得到这个子集中元素的概率的倒数. 用一次选择能得到这个子集中的元素的方案数除上总方案数(每次共有$2*n*m-n-m$种选择方…
[UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次任意覆盖相邻的两个,那么很明显就可以套\(min-max\)容斥. 要求的就是\(max(All)\),而每个集合的\(min\)是很好求的. 如果直接暴力枚举集合复杂度就是\(2^{cnt}cnt\). 仔细想想每个子集我们要知道的是什么,只需要知道子集大小来确定前面的容斥系数,还需要知道覆盖子集…
BZOJ 洛谷 \(Description\) 给定\(n,m,c\).\(Q\)次询问,每次询问给定\(2*c\)的模板串,求它在多少个\(n*m\)的棋盘中出现过.棋盘的每个格子有三种状态. \(n\leq 100,m\leq 12,c\leq 6,Q\leq 5\). \(Solution\) 模板串只有\(2\)行,把它拆成两个串,考虑轮廓线DP. 对于\((i,j)\)这个格子,只需要考虑\((i-1,j)\)是否匹配了模式串的第一行,\((i,j)\)匹配到模式串第二行的哪. 所以令…