MongoDB中的MapReduce介绍与使用】的更多相关文章

一.简介 在用MongoDB查询返回的数据量很大的情况下,做一些比较复杂的统计和聚合操作做花费的时间很长的时候,可以用MongoDB中的MapReduce进行实现 MapReduce是个非常灵活和强大的数据聚合工具.它的好处是可以把一个聚合任务分解为多个小的任务,分配到多服务器上并行处理.MongoDB也提供了MapReduce,当然查询语肯定是JavaScript. MongoDB中的MapReduce主要有以下几阶段: Map:把一个操作Map到集合中的每一个文档 Shuffle: 根据Ke…
转载自残缺的孤独 1.概述 MongoDB中的MapReduce相当于关系数据库中的group by.使用MapReduce要实现两个函数Map和Reduce函数.Map函数调用emit(key,value),遍历 Collection中所有的记录,将key与value传递给Reduce函数进行处理. 2.MapReduce (1)其基本语法如下所示: db.runCommand({ mapreduce:<collection>, map:<mapfunction>, reduce…
建立下述测试数据,通过MapReduce统计每个班级学生数及成绩和. 代码如下: public string SumStudentScore() { var collection = _dataBase.GetCollection("StudentInfo"); //按照班级(Class)进行分组统计,并将每条记录的记录数(1)和成绩(this.Score)作为Reduce参数 string mapFunction = @"function(){ emit(this.Clas…
一.简介 在用MongoDB查询返回的数据量很大的情况下,做一些比较复杂的统计和聚合操作做花费的时间很长的时候,可以用MongoDB中的MapReduce进行实现 MapReduce是个非常灵活和强大的数据聚合工具.它的好处是可以把一个聚合任务分解为多个小的任务,分配到多服务器上并行处理.MongoDB也提供了MapReduce,当然查询语肯定是JavaScript. MongoDB中的MapReduce主要有以下几阶段: Map:把一个操作Map到集合中的每一个文档 Shuffle: 根据Ke…
Aggregate是MongoDB提供的众多工具中的比较重要的一个,类似于SQL语句中的GROUP BY.聚合工具可以让开发人员直接使用MongoDB原生的命令操作数据库中的数据,并且按照要求进行聚合. MongoDB提供了三种执行聚合的方法:Aggregation Pipleline,map-reduce功能和 Single Purpose Aggregation Operations 其中用来做聚合操作的几个函数是 aggregate(pipeline,options) 指定 group 的…
MongoDB中mapReduce的使用 制作人:全心全意 mapReduce的功能和group by的功能类似,但比group by处理的数据量更大 使用示例: var map = function(){ emit(this.cat_id,this.price); #根据cat_id进行分组,对price字段进行操作 } var reduce = function(cat_id,price){ return Array.avg(price); #对price进行求平均值操作,并返回结果 } d…
前言 任何一种数据库都有各种各样的日志,MongoDB也不例外.MongoDB中有4种日志,分别是系统日志.Journal日志.oplog主从日志.慢查询日志等.这些日志记录着MongoDB数据库不同方面的踪迹.下面分别介绍这几种日志. 系统日志 系统日志在MongoDB数据库中很重要,它记录着MongoDB启动和停止的操作,以及服务器在运行过程中发生的任何异常信息. 配置系统日志的方法比较简单,在启动mongod时指定logpath参数即可 ? 1 mongod -logpath=/data/…
这篇文章主要介绍了浅析mongodb中group分组的实现方法及示例,非常的简单实用,有需要的小伙伴可以参考下. group做的聚合有些复杂.先选定分组所依据的键,此后MongoDB就会将集合依据选定键值的不同分成若干组.然后可以通过聚合每一组内的文档,产生一个结果文档.和数据库一样group常常用于统计.MongoDB的group还有很多限制,如:返回结果集不能超过16M, group操作不会处理超过10000个唯一键,好像还不能利用索引[不很确定]. 一.Group大约需要一下几个参数. 1…
中介绍了如何基于Mongodb进行关系型数据的分布式存储,有了存储就会牵扯到查询.虽然用普通的方式也可以进行查询,但今天要介绍的是如何使用MONGODB中提供的MapReduce功能进行查询.      有关MongoDb的MapReduce之前我写过一篇文章 Mongodb Mapreduce 初窥, 今天介绍如何基于sharding机制进行mapreduce查询.在MongoDB的官方文档中,这么一句话:    Sharded Environments       In sharded en…
聚集操作是对数据进行分析的有效手段.MongoDB主要提供了三种对数据进行分析计算的方式:管道模式聚集分析,MapReduce聚集分析,简单函数和命令的聚集分析. 1. 管道模式进行聚集 这里所说的管道类似于Unix上的管道命令.数据通过一个多步骤的管道,每个步骤都会对数据进行处理,最后返回需要的结果集.管道提供了高效的数据分析流程,是MongoDB中首选的数据分析方法.一个典型的管道操作流程如下图所示:…