ARIMA模型总结】的更多相关文章

什么是 ARIMA模型 ARIMA模型的全称叫做自回归移动平均模型,全称是(ARIMA, Autoregressive Integrated Moving Average Model).也记作ARIMA(p,d,q),是统计模型(statistic model)中最常见的一种用来进行时间序列 预测的模型. 1. ARIMA的优缺点 优点: 模型十分简单,只需要内生变量而不需要借助其他外生变量. 缺点: 1.要求时序数据是稳定的(stationary),或者是通过差分化(differencing)…
本文结构: 时间序列分析? 什么是ARIMA? ARIMA数学模型? input,output 是什么? 怎么用?-代码实例 常见问题? 时间序列分析? 时间序列,就是按时间顺序排列的,随时间变化的数据序列.生活中各领域各行业太多时间序列的数据了,销售额,顾客数,访问量,股价,油价,GDP,气温... 随机过程的特征有均值.方差.协方差等.如果随机过程的特征随着时间变化,则此过程是非平稳的:相反,如果随机过程的特征不随时间而变化,就称此过程是平稳的.下图所示,左边非稳定,右边稳定. 非平稳时间序…
时间序列分析模型——ARIMA模型 一.研究目的 传统的经济计量方法是以经济理论为基础来描述变量关系的模型.但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂.为了解决这些问题而出现了一种用非结构方法来建立各个变量之间关系的模型,如向量自回归模型(vector autoregression,VAR)和向量误差修正模型(vector error correction model,VEC). 在经典的回归模型…
A IMA模型是一种著名的时间序列预测方法,主要是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型.ARIMA模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA).自回归过程(AR).自回归移动平均过程(ARMA)以及ARIMA过程.其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项: MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数. 通常的建立ARIMA…
时间序列建模基本步骤 获取被观测系统时间序列数据: 对数据绘图,观测是否为平稳时间序列:对于非平稳时间序列要先进行d阶差分运算,化为平稳时间序列: 经过第二步处理,已经得到平稳时间序列.要对平稳时间序列分别求得其自相关系数ACF 和偏自相关系数PACF ,通过对自相关图和偏自相关图的分析,得到最佳的阶层 p 和阶数 q 由以上得到的d.q.p,得到ARIMA模型.然后开始对得到的模型进行模型检验 一.时间序列平稳性 1.判断是否平稳 平稳性就是要求经由样本时间序列所得到的拟合曲线在未来一段时间内…
(图片来自百度) 数据 分析数据第一步还是套路------画图 数据看上去比较平整,但是由于数据太对看不出具体情况,于是将只取前300个数据再此画图 这数据看上去很不错,感觉有隐藏周期的意思 代码 #coding:utf-8 import csv import matplotlib.pyplot as plt def read_csv_data(aim_list_1, aim_list_2, file_name): i = 0 csv_file = csv.reader(open(file_na…
先看下图: 这是1986年到2006年的原油月度价格.可见在2001年之后,原油价格有一个显著的攀爬,这时再去假定均值是一个定值(常数)就不太合理了,也就是说,第二讲的平稳模型在这种情况下就太适用了.也因此有了今天这一讲. 要处理这种非平稳的数据(比如上图中的均值不是一个常数),需要用非平稳模型:求和自回归滑动平均(Autoregressive integrated moving average, ARIMA).接下来,咱先看一个处理过的石油价格: 是不是似曾相识?! 对的,经过简单的处理,本来…
昨天刚刚把导入数据弄好,今天迫不及待试试怎么做预测,网上找的帖子跟着弄的. 第一步.对原始数据进行分析 一.ARIMA预测时间序列 指数平滑法对于预测来说是非常有帮助的,而且它对时间序列上面连续的值之间相关性没有要求.但是,如果你想使用指数平滑法计算出预测区间,那么预测误差必须是不相关的, 而且必须是服从零均值. 方差不变的正态分布.即使指数平滑法对时间序列连续数值之间相关性没有要求,在某种情况下,我们可以通过考虑数据之间的相关性来创建更好的预测模型.自回归移动平均模型( ARIMA) 包含一个…
https://www.cnblogs.com/bradleon/p/6827109.html 文章里写得非常好,需详细看.尤其是arima的举例! 可以看到:ARIMA本质上是error和t-?时刻数据差分的线性模型!!! ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列(Time-series Approach…
ARIMA模型全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法 ,所以又称为box-jenkins模型.博克思-詹金斯法.其中ARIMA(p,d,q)称为差分自回归移动平均模型,AR是自回归, p为自回归项: MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数.所谓ARIMA模型,是指将非平稳时间序列…