【转】Caffe的solver文件配置】的更多相关文章

原文: http://blog.csdn.net/czp0322/article/details/52161759 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是model里自带的,一直都对里面的参数不是很了解,所以今天认真学习了一下里面各个参数的意义. DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题.sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,从而达到最小化loss,实际…
http://blog.csdn.net/czp0322/article/details/52161759 solver.prototxt 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是model里自带的,一直都对里面的参数不是很了解,所以今天认真学习了一下里面各个参数的意义. DL的任务中,几乎找不到解析解,所以将其转化为数学中的优化问题.sovler的主要作用就是交替调用前向传导和反向传导 (forward & backward) 来更新神经网络的连接权值,从而…
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. 到目前的版本,…
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法. 到目前的版本,…
caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面,如下: base_lr: 0.001 display: 782 gamma: 0.1 lr_policy: “step” max_iter: 78200 momentum: 0.9 snapshot: 7820 snapshot_prefix: “snapshot” solver_mode: GPU solver_type: SGD stepsize: 26067 test_inte…
caffe solver参数意义与设置 batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片:则,如果你的总图片张数为1280000张,则要想将你所有的图片通过网络训练一次,则需要1280000/256=5000次迭代. epoch:表示将所有图片在你的网络中训练一次所需要的迭代次数,如上面的例子:5000次:我们称之为  一代.所以如果你想要你的网络训练100代时,则你的总的迭代次数为max_iteration=5…
caffe在训练的时候,需要一些参数设置,我们一般将这些参数设置在一个叫solver.prototxt的文件里面 有一些参数需要计算的,也不是乱设置. 假设我们有50000个训练样本,batch_size为64,即每批次处理64个样本,那么需要迭代50000/64=782次才处理完一次全部的样本.我们把处理完一次所有的样本,称之为一代,即epoch.所以,这里的test_interval设置为782,即处理完一次所有的训练数据后,才去进行测试.如果我们想训练100代,则需要设置max_iter为…
本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可能要超过1周的时间. 不同的网络结构,可能会有不同图片尺寸的需求,所以训练之前需要了解一下,在生成LMDB环节就直接符合上模型的数据要求. 如果你自己DIY了框架,那么不知道如何检验框架与通用框架比较,是否优质,可以去benchmarks网站,跟别人的PK一下:http://human-pose.m…
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/54141697 本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了… 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可能要超过1周的时间. 不同的网络结构,可能会有不同图片尺寸的需求,所以训练之前需要了…
https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover.prototxt 在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解.solver的主要作用就是交替调用前向(forward)算法和后向(ba…