仙人掌的同构(hash)】的更多相关文章

关于仙人掌的同构,主要是我太蒟蒻了QAQ,问了好几位大佬才弄好. 手撕仙人掌,你得先有手套 ,你得先了解以下基本知识 a.点双连通分量,没什么好说得,仙人掌上有环,判环用点双 b.树的hash点这里 c.仙人掌点这里 对于一棵仙人掌,我们通过一些方法来简化: 我们最讨厌的是环,假如说没有环,那么树的hash还是蛮简单的. OK那么就是圆方树了,如果你还不知道什么是圆方树,请自行百度或者点这里. 当然对于判定仙人掌的同构,不需要一颗完整的圆方树,只需要在环中间建点 单纯地表示一个环,使用最小表示法…
题意 题目链接 Sol 树的同构问题,直接拿hash判一下,具体流程大概是这样的: 首先转化为有根树,预处理出第\(i\)棵树以\(j\)为根时的hash值. 那么两个树同构当且仅当把两棵树的hash数组排完序后完全一致(感性理解一下) /* */ #include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x, y) make_pair(x, y) #define fi first #define se secon…
LINK:模板 树同构 题目说的很迷 给了一棵有根树 但是重新标号 言外之意还是一棵无根树 然后要求判断是否重构. 由于时无根的 所以一个比较显然的想法暴力枚举根. 然后做树hash或者树的最小表示法. 前者做一次时n^2logn的 而后者则是严格的n^2logn的. 这样加上暴力枚举根就是n^3logn了. 最后我们将这些东西再sort一下和其他的树做对比 如果所有的都完全一致那么说明时同构的. 算法正确性 首先完全一样的树 再做树hash或者最小表示法时 得到的东西必然一样. 这个可以利用递…
仙人掌&圆方树学习笔记 1.仙人掌 圆方树用来干啥? --处理仙人掌的问题. 仙人掌是啥? (图片来自于\(BZOJ1023\)) --也就是任意一条边只会出现在一个环里面. 当然,如果你的图片想看起来舒服一点,也可以把图片变成这样子 (图片来源于网络) 2.DFS树 为啥要写这个?--因为这个看起来也可以解决一些仙人掌的问题. 对于一个仙人掌,我们随便构建出一棵生成树. 然后我们就多了一些边--可以叫返祖边,非树边--你想叫啥就叫啥. 因为每条边只会出现在一个环中, 所以每一条返祖边覆盖了树中…
Description 给定一个N,N<=50 000个节点的仙人掌,其是指每条边最多在一个环中的无向图,求仙人掌有多少种自同构.自同构是指得是图的顶点集合V到V的变换M, 以P1^a1*P2^a2...Pk^ak的形式输出,其中Pk是素数. 建圆方树,找到重心,如果重心有两个就在它们之间的边上插一个点,同构变换后重心不变 以重心为根得到有根树,对于树点,统计交换子树造成的同构,将所有贡献累乘得到答案,对于环点,如果不是重心,就只有翻转这个环能产生新的同构,否则这个环除了翻转还可以旋转,用has…
4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相 同,那么这两个树是同构的.也就是说,它们具有相同的形态. 现在,给你M个有根树,请你…
[NOI2013模拟]坑带的树 题意: 求\(n\)个点,\(m\)条边的同构仙人球个数. \(n\le 1000\) 这是一道怎么看怎么不可做的题. 这种题,肯定是圆方树啦~ 好,那么首先转为广义圆方树. 圆方树上有两种点(废话),那么对于一个方点,它实际上代表的是一个点双,所以我们需要判断一个方点的子树是否中间对称,如果对称则这个子树答案乘\(2\). 显然. 然后判断一个圆点与几个方点相连时,注意到方点之间是可以互相交换顺序的,于是我们看看有多少个子树相同,乘个阶乘. 最后就是求同构仙人球…
考虑建出圆方树.显然只有同一个点相连的某些子树同构会产生贡献.以重心为根后(若有两个任取一个即可),就只需要处理子树内部了. 如果子树的根是圆点,其相连的同构子树可以任意交换,方案数乘上同构子树数量的阶乘即可.而若是方点,注意到其相邻的圆点在原树中是有序地在一个环上的,要产生同构只能旋转或翻转该环.并且因为一开始我们选择了重心为根,所以对于非重心的方点,将其所在的环旋转显然是无法产生贡献的.所以对于方点的所有孩子按环上顺序存储,其哈希值应以该顺序计算,正反取较小的,算贡献时对非重心点只考虑翻转,…
Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相 同,那么这两个树是同构的.也就是说,它们具有相同的形态. 现在,给你M个有根树,请你把它们按同构关系分成若干个等价类. Input 第一行,一个整数M. 接下来M行,每行包含若干个整数,表示一个树.第一个整数N表示点数.接下来N 个整数,依次…
Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相 同,那么这两个树是同构的.也就是说,它们具有相同的形态. 现在,给你M个有根树,请你把它们按同构关系分成若干个等价类. Input 第一行,一个整数M. 接下来M行,每行包含若干个整数,表示一个树.第一个整数N表示点数.接下来N 个整数,依次…