\(\color{#0066ff}{ 题目描述 }\) 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd(a,b)表示a与b的最大公约数. \(\color{#0066ff}{输入格式}\) 一行两个整数p.n. \(\color{#0066ff}{输出格式}\) 一行一个整数(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~…
求 $\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j)$   考虑欧拉反演: $\sum_{d|n}\varphi(d)=n$   $\Rightarrow \sum_{i=1}^{n}\sum_{j=1}^{n}ij\sum_{d|gcd(i,j)}\varphi(d)$   $\Rightarrow \sum_{i=1}^{n}\sum_{j=1}^{n}ij\sum_{d|i,d|j}\varphi(d)$   $\Rightarrow \sum_{d=1}^{…
\[\sum_{i=1}^{n}\sum_{j=1}^{n} ij\gcd(i,j)\] \[=\sum_{d=1}^{n} d \sum_{i=1}^{n}\sum_{j=1}^{n} ij[\gcd(i,j)==d]\] \[=\sum_{d=1}^{n} d^3 \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{n}{d}\rfloor} ij[\gcd(i,j)==1]\] \[=\sum_{d=1}^{n}…
题面: 传送门 实际上就是求: 思路: 看到gcd就先反演一下,过程大概是这样: 明显的一步反演 这里设,S(x)等于1到x的和 然后把枚举d再枚举T变成先枚举T再枚举其约数d,变形: 后面其中两项展开,把T提出来 S那里可以数论分块,那么只要S后面那个东西可以筛出来,就可以O(sqrt(n)) 发现后面的那部分可以狄利克雷卷积一波 这明显是一个积性函数,但是n有10^10,所以不能线筛 考虑使用杜教筛,令上述函数为f,函数S为f的前缀和 套用杜教筛模板式 现在问题就是选一个合适的g函数了 我们…
题目描述 给出 $n$ 和 $p$ ,求 $(\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j))\mod p$ . $n\le 10^{10}$ . 题解 欧拉函数(欧拉反演)+杜教筛 推式子: $$\begin{align}&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\gcd(i,j)\\=&\sum\limits_{i=1}^n\sum\limits_{j=1}^nij\sum\limits_{d|…
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线性筛筛常见积性函数及其代码:https://blog.masterliu.net/algorithm/sieve/ 积性函数与线性筛(包括普通线性函数):https://blog.csdn.net/weixin_42562050/article/details/87997582 bzoj2154/b…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…
题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd(a,b)表示a与b的最大公约数. 输入输出格式 输入格式: 一行两个整数p.n. 输出格式: 一行一个整数(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\). 输入输出样例 输入样例#1: 998244353 2000 输出样例#1: 883968974…
https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\frac{({\lfloor}\frac{n}{d}{\rfloor}+1)^2{{\lfloor}\frac{n}{d}{\rfloor}}^2}{4}$ 可以对calc(d)做整除分块,那么要求$d^2\varphi(d)$的前缀和 看一眼数据范围,大概要杜教筛 凑了一会,发现令$f(d)=d^…
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质因子,重复的质因子计算多次. 特别的,定义 \(f(1) = 0, f(p) = 0\) ,此处 \(p\) 为质数. 题解 首先先莫比乌斯反演前几步. \[ ans = \sum_{d = 1}^{n} f(d)^k \sum_{i = 1}^{\lfloor \frac{n}{d} \rfloo…