一. 二.案例:详见代码.针对案例提出的6个问题: 假设要针对整个网站的历史数据进行处理, 量有 1T, 如何处理? 放在集群中, 利用集群多台计算机来并行处理 如何放在集群中运行? 简单来讲, 并行计算就是同时使用多个计算资源解决一个问题, 有如下四个要点 要解决的问题必须可以分解为多个可以并发计算的部分 每个部分要可以在不同处理器上被同时执行 需要一个共享内存的机制 需要一个总体上的协作机制来进行调度 如果放在集群中的话, 可能要对整个计算任务进行分解, 如何分解? 概述 对于 HDFS 中…
一.reduce和reduceByKey: 二.:RDD 的算子总结 RDD 的算子大部分都会生成一些专用的 RDD map, flatMap, filter 等算子会生成 MapPartitionsRDD coalesce, repartition 等算子会生成 CoalescedRDD 常见的 RDD 有两种类型 转换型的 RDD, Transformation 动作型的 RDD, Action 常见的 Transformation 类型的 RDD map flatMap filter gr…
目标 SparkSQL 是什么 SparkSQL 如何使用 Table of Contents 1. SparkSQL 是什么 1.1. SparkSQL 的出现契机 1.2. SparkSQL 的适用场景 2. SparkSQL 初体验 2.3. RDD 版本的 WordCount 2.2. 命令式 API 的入门案例 2.2. SQL 版本 WordCount 3. [扩展] Catalyst 优化器 3.1. RDD 和 SparkSQL 运行时的区别 3.2. Catalyst 4. D…
1. 回顾和展望 1.1. Spark 编程模型的进化过程 1.2. Spark 的 序列化 的进化过程 1.3. Spark Streaming 和 Structured Streaming 2. Structured Streaming 入门案例 2.1. 需求梳理 2.2. 代码实现 2.3. 运行和结果验证 3. Stuctured Streaming 的体系和结构 3.1. 无限扩展的表格 3.2. 体系结构 4. Source 4.1. 从 HDFS 中读取数据 4.2. 从 Kaf…
如何判断宽窄依赖: =================================== 6. Spark 底层逻辑 导读 从部署图了解 Spark 部署了什么, 有什么组件运行在集群中 通过对 WordCount 案例的解剖, 来理解执行逻辑计划的生成 通过对逻辑执行计划的细化, 理解如何生成物理计划   如无特殊说明, 以下部分均针对于 Spark Standalone 进行介绍 部署情况 在 Spark 部分的底层执行逻辑开始之前, 还是要先认识一下 Spark 的部署情况, 根据部署情…
Spark Streaming 导读 介绍 入门 原理 操作 Table of Contents 1. Spark Streaming 介绍 2. Spark Streaming 入门 2. 原理 3. 操作 1. Spark Streaming 介绍 导读 流式计算的场景 流式计算框架 Spark Streaming 的特点 新的场景 通过对现阶段一些常见的需求进行整理, 我们要问自己一个问题, 这些需求如何解决? 场景 解释 商品推荐 京东和淘宝这样的商城在购物车, 商品详情等地方都有商品推…
以下各节已定义,但尚未为布局页“~/Views/Shared/_Layout.cshtml”呈现:“Scripts”. 报错内容如下: 解决办法如下: 1.在_Layout.cshtml布局body内,添加section,Scripts.Render和RenderSection标签示例代码如下: <body class="bodyBg font_fm">     <section>         @RenderBody()     </section&g…
一.前述 Spark中默认有两大类算子,Transformation(转换算子),懒执行.action算子,立即执行,有一个action算子 ,就有一个job. 通俗些来说由RDD变成RDD就是Transformation算子,由RDD转换成其他的格式就是Action算子. 二.常用Transformation算子 假设数据集为此: 1.filter      过滤符合条件的记录数,true保留,false过滤掉. Java版: package com.spark.spark.transform…
1.   为了使计算简单,引入滞后算子的概念: 2.   定义LYt = Yt-1 , L2Yt = Yt-2,... , LsYt = Yt-s. 3.   也就是把每一期具体滞后哪一期的k提到L的上方,来用一个Yt来标记具体属于哪一个滞后期.默认,Yt-1的上方为1,其实不用写. 4.   一定和一个滞后变量放在一起的,不能单独出现L. 5.   用滞后算子来表示比较方便一些,但是最后要带回去,表示具体的哪一个滞后期. 6   另外,我们把滞后算子的s标记,标记成负数,就为超前算子.比如L-…
Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]   将函数应用于RDD的每一元素,并返回一个新的RDD package top.ruandb import org.apache.spark.{SparkConf, SparkContext} object RddTest extends App{ val sparkConf = new SparkConf…