后面的图片将会告诉: 如何推出FWT的公式tf 如何推出FWT的逆公式utf 用的是设系数,求系数的方法! ========================================================= 以一种高度思考 http://picks.logdown.com/posts/179290-fast-walsh-hadamard-transform 加和乘的定义 大小为1时的公式 https://blog.csdn.net/zhshrs/article/details/5…
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级数也是形式幂级数的一种,只是集合的一种表现形式,无需考虑收敛或发散的含义 定义一个集合 \(S\) 的集合幂级数为 \(f\) ,那么我们就可以把集合 \(S\) 表示为如下形式 \(\begin{aligned}f=\sum _{T\subseteq S}f_{T}\cdot x^{T}\end{align…
u1s1 距离省选只剩 5 days 了,现在学新算法真的合适吗(( 位运算卷积 众所周知,对于最普通的卷积 \(c_i=\sum\limits_{j+k=i}a_jb_k\),\(a_jb_k\) 的贡献累加到 \(c_{j+k}\) 上,因此这种卷积又被称为加法卷积. 但是对于某些卷积,\(a_jb_k\) 的贡献就不是累加到 \(j+k\) 上了,有一类卷积,\(a_jb_k\) 的贡献会累加到 \(j\otimes k\) 上,其中 \(\otimes\) 是某种位运算,即 \(\&,|…
CGZ大佬提醒我,我要是再不更博客可就连一月一更的频率也没有了... emmm,正好做了一道有点意思的题,就拿出来充数吧=.= 题意 一棵树,有 $ n (n\leq50000) $ 个节点,每个点都有一个颜色,共有 $ k(k\leq10) $ 种颜色,问有多少条路径可以遍历到所有 $ k $ 种颜色?(一条路径交换起点终点就算两条哦) 做法 事实证明,连我都能不看题解想出来的题果然都是水题qwq 我是从CJ的xzyxzy大佬上的博客上看到这道题的,所以就理所当然用FWT做了...然后才发现网…
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智商 ,网上的FWT博客我大多看不懂,下面这篇博客是留给我我再次忘记FWT时看的,所以像我一样的没智商选手应该也能看懂!有智商选手更能看懂咯! (写得非常匆忙,如有任何错误请在评论区指正!TAT) 什么是FWT FWT是用来快速做位运算卷积的.位运算卷积是什么?给出两个数组\(A\)和\(B\)(长度相等且是2…
快速沃尔什变换\(FWT\) 是一种可以快速完成集合卷积的算法. 什么是集合卷积啊? 集合卷积就是在集合运算下的卷积.比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\),而集合卷积计算的就是\(C_i=\sum_{j\otimes k=i}A_j*B_k\),其中\(\otimes\)是一种集合运算,可以是与.或.异或. 类似于快速傅里叶变换\(FFT\),\(FWT\)也需要寻求一种变换方式\(FWT(A)\),使\(FWT(C)=FWT(A)*FWT(B)\)…
这是我第一道独立做出来的FWT的题目,所以写篇随笔纪念一下. (这还要纪念,我太弱了) 题目链接: BZOJ 题目大意:两人玩nim游戏(多堆石子,每次可以从其中一堆取任意多个,不能操作就输).$T$ 组数据,现在问如果 $n$ 堆石子,每堆石子个数都是不超过 $m$ 的素数,有多少种不同的石子序列使得先手没有必胜策略,答案对 $10^9+7$ 取模.(石子堆顺序不同也算不同) $1\leq T\leq 80,1\leq n\leq 10^9,1\leq m\leq 5\times 10^4$.…
快速莫比乌斯变换(FMT) 原文出处:虞大的博客.此仅作蒟蒻本人复习用~ 给定两个长度为n的序列 \(a_0, a_1, \cdots, a_{n-1}\)和\(b_0, b_1, \cdots, b_{n-1}\),你需要求出一个序列\(c_0, c_1, \cdots, c_{n-1}\),其中\(c_k\)满足:\(c_k = \sum\limits_{i \mid j = k} a_i b_j\).其中|表示按位或.\(n \leq 10^6\)表示序列长度. 显然发现\(i∣j=k\)…
[学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中\(*\)是点积,就是对应位置乘起来. 而对于\(orFWT\), \[ C'[i]=FWT(C)[i]=\sum_{j\subseteq i}C[j] \] 那么证明一下: \[ \begin{array} &C'[i]&=\sum_{j\subseteq i} C[j] \\ &=…
问题描述 已知\(A(x)\)和\(B(x)\),\(C[i]=\sum\limits_{j\otimes k=i}A[j]*B[k]\),求\(C\) 其中\(\otimes\)是三种位运算的其中一种 具体求解 说在前面:接下来的一些符号的话我们统一用\(\otimes\)代表某种位运算(选定的),如果这个符号出现在两个多项式之间(如:\(A\otimes B\)),那么是表示按照最上面那条式子卷积,如果出现在两个数之间(如\(j\otimes k\)),那么是表示这两个数进行这种位运算:然后…