在训练keras时,发现不使用GPU进行计算,而是采用CPU进行计算,导致计算速度很慢. 用如下代码可检测tensorflow的能使用设备情况: from tensorflow.python.client import device_lib print(device_lib.list_local_devices()) 查看是否只有CPU可用,发现不是,有GPU可用,但是为什么GPU利用率极低并且只有一个GPU在使用,另一个GPU利用率为0, 发现在启动时有一行报错: Could not load…
一.问题 使用deeplearning4j进行GPU训练时,可能会出现java.lang.UnsatisfiedLinkError: no jnicudnn in java.library.path错误. 二.错误 15:43:26.389 [main] INFO org.nd4j.linalg.api.ops.executioner.DefaultOpExecutioner - Backend used: [CUDA]; OS: [Windows 10] 15:43:26.390 [main]…
本机使用的 GPU 是 GeForce 840M,2G 显存,本机内存 8G. 试验时,使用 vgg 网络,调整 vgg 网络中的参数,使得使用对应的 batch_size 时不会提示内存溢出.使用的是 mnist 数据集,图片尺寸是28×28.结果如下: # batch_size = 1 # 参数总数:5946134 # batch_size = 32 # 参数总数:5262436 # batch_size = 64 # 参数总数:4770788 # batch_size = 100 # 参数…
Tensorflow可在训练时制定占用那几个gpu,但如果想真正的使用多gpu训练,则需要手动去实现. 不知道tf2会不会改善一下. 具体参考:https://wizardforcel.gitbooks.io/tensorflow-examples-aymericdamien/6.2_multigpu_cnn.html https://jhui.github.io/2017/03/07/TensorFlow-GPU/ https://zhuanlan.zhihu.com/p/75195049…
0.深入理解GPU训练加速原理 我们都知道用GPU可以加速神经神经网络训练(相较于CPU),具体的速度对比可以参看我之前写的速度对比博文: [深度应用]·主流深度学习硬件速度对比(CPU,GPU,TPU) GPU是如何加速的呢? 我打算从两个方面来解答: 单个GPU较于CPU加速: 在训练网络中,其实大量的运算资源都消耗在了数值计算上面,大部分网络训练的过程都是1.计算loss,2.根据loss求梯度,3.再根据梯度更新参数(梯度下降原理).无论在GPU还是CPU中,都是不断重复123步.但是由…
# 安装 2.7 环境conda create -n python2. python= conda activate python2. # 安装 1.1.0 gpu版本pip # 配置环境变量export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/ex…
前言 首先,如果你现在已经很熟悉tf.data+estimator了,可以把文章x掉了╮( ̄▽ ̄””)╭ 但是!如果现在还是在进行session.run(..)的话!尤其是苦恼于GPU显存都塞满了利用率却上不去的童鞋,这篇文章或许可以给你打开新世界的大门噢( ̄∇ ̄) 如果发现经过一系列改良后训练效率大大提高了,记得回来给小夕发小红包( ̄∇ ̄) 不过,这并不是一篇怒贴一堆代码,言(三)简(言)意(两)赅(语)就结束的CSDN文风的文章...所以伸手党们也可以X掉了╮( ̄▽ ̄””)╭ 缘起 很早很早…
查看GPU-ID CMD输入: nvidia-smi 观察到存在序号为0的GPU ID 观察到存在序号为0.1.2.3的GPU ID 在终端运行代码时指定GPU 如果电脑有多个GPU,Tensorflow默认全部使用.如果想只使用部分GPU,可以设置CUDA_VISIBLE_DEVICES 命令行输入: # 指定采用1号GPU运行*.py CUDA_VISIBLE_DEVICES=1 python *.py Environment Variable Syntax Results CUDA_VIS…
安装说明 平台:Window.Ubuntu.Mac等操作系统 版本:支持GPU版本和CPU版本 安装方式:pip方式.Anaconda方式 attention: 在Windows上目前支持python3.5.x GPU版本可支持CUDA9.0.Cudnn7.0 安装过程 CUDA简介 CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台. CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题…
关于多gpu训练,tf并没有给太多的学习资料,比较官方的只有:tensorflow-models/tutorials/image/cifar10/cifar10_multi_gpu_train.py 但代码比较简单,只是针对cifar做了数据并行的多gpu训练,利用到的layer.activation类型不多,针对更复杂网络的情况,并没有给出指导.自己摸了不少坑之后,算是基本走通了,在此记录下 一.思路 单GPU时,思路很简单,前向.后向都在一个GPU上进行,模型参数更新时只涉及一个GPU.多G…
1. 已经安装cuda但是tensorflow仍然使用cpu加速的问题 电脑上同时安装了GPU和CPU版本的TensorFlow,本来想用下面代码测试一下GPU程序,但无奈老是没有调用GPU. import tensorflow as tf with tf.device('/cpu:0'): a = tf.constant ([1.0, 2.0, 3.0], shape=[3], name='a') b = tf.constant ([1.0, 2.0, 3.0], shape=[3], nam…
GPU占用率查看: 方法一:任务管理器 如图,GPU0和GPU1的占用率如下显示. 方法二:GPU-Z软件       下面两个GPU,上面是GPU0,下面是GPU1 sensors会话框里的GPU Load就是占用率 大家可以查看GPU0和GPU1的使用与否和使用率 方法三:终端查看 在运行中输入cmd,打开终端 输入cd C:\Program Files\NVIDIA Corporation\NVSMI 回车 输入nvidia-smi 输出为 其中GPU下的0和1 指不同GPU,Memory…
论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) 2017年09月28日 11:58:49 阅读数:1814 [ 转载自http://www.yyliu.cn/post/7cabb4ff.html ] CVPR 2017上,清华大学的Zhuang Liu.康奈尔大学的Gao Huang和Kilian Q.Weinberger,以及Facebook研究员Laurens van der Maaten 所作论文Densely Con…
本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一.基本概念 Cluster.Job.task概念:三者可以简单的看成是层次关系,task可以看成每台机器上的一个进程,多个task组成job:job又有:ps.worker两种,分别用于参数服务.计算服务,组成cluster. 同步更新 各个用于并行计算的电脑,计算完各自的batch 后,求取梯度值,把梯度值统一送到ps服务机器中,由ps服务机器求取梯度平均值,更新ps服务器上的参数…
使用Keras训练具有多个GPU的深度神经网络(照片来源:Nor-Tech.com). 摘要 在今天的博客文章中,我们学习了如何使用多个GPU来训练基于Keras的深度神经网络. 使用多个GPU使我们能够获得准线性加速. 为了验证这一点,我们在CIFAR-10数据集上训练了MiniGoogLeNet. 使用单个GPU,我们能够获得63秒的时间段,总训练时间为74分10秒. 然而,通过使用Keras和Python的多GPU训练,我们将训练时间减少到16秒,总训练时间为19m3s. 使用Keras启…
本文以两篇官方文档为基础来学习TensorFlow如何进行分布式训练,借此进入Strategy世界.…
tensorflow1.0和tensorflow2.0的区别主要是1.0用的静态图 一般情况1.0已经足够,但是如果要进行深度神经网络的训练,当然还是tensorflow2.*-gpu比较快啦. 其中tensorflow有CPU和GPU两个版本(2.0安装方法), CPU安装比较简单: pip install tensorflow-cpu 一.查看显卡 日常CPU足够,想用GPU版本,要有NVIDIA的显卡,查看显卡方式如下: 二.查看版本对应关系 然后我们需要去下载NVIDIA驱动CUDA以及…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_40087578/article/details/87186613这里记录用pytorch 多GPU训练 踩过的许多坑   仅针对单服务器多gpu 数据并行 而不是 多机器分布式训练 一.官方思路包装模型 这是pytorch 官方的原理图  按照这个官方的原理图  修改应该参照 https://blog.csdn.net/qq…
在不少人的心目中,显卡最大的用途可能就只有两点--玩游戏.看电影,除此之外,GPU并没有其他的作用了.但是随着微软IE9的正式发布,不少人突然发现,微软一直提到一个名词:GPU硬件加速,从而也让不少人开始关注GPU硬件加速.那么GPU硬件加速到底是什么?能干些什么呢?下面让我们一起走进GPU硬件加速的世界去看看吧. GPU硬件加速就是显卡辅助CPU进行图形运算 要说起GPU硬件加速,我们首先要说说GPU这个概念.GPU是1999年,NVIDIA公司在发布GeForce256时提出的,它可以减少对…
Beholder is a TensorBoard plugin for viewing frames of a video while your model trains. It comes with tools to visualize the parameters of your network, visualize arbitrary arrays like gradients. Beholder是一个TensorBoard插件,用于在模型训练时查看视频帧. 它具有可视化网络参数的工具,…
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/peghoty/p/3857839.html 2.刘建平:word2vec原理:https://www.cnblogs.com/pinard/p/7160330.html 3.吴恩达:<序列模型:自然语言处理与词嵌入> 理论看完了就要实战了,通过实战能加深对word2vec的理解.目前用word2vec算法…
Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batch数据也等分到不同的设备 最后将所有设备计算得到的梯度合并更新主设备上的模型参数 代码实现(以Minist为例) #!/usr/bin/python3 # coding: utf-8 import torch from torchvision import datasets, transforms…
当我们用MNIST手写体数字数据库和LeNet CNN 模型训练超参数,运行 examples/mnist/train_lenet.sh是出现Cannot use GPU in CPU-only Caffe: check mode. 这时候需要调整两个配置文件:1.安装文件根目录的Makefile.config 里的 这一项去掉#2. examples/mnist/lenet_solver.prototxt 中 将这一项de的GPU改为CPU 后再运行 examples/mnist/train_…
由于现在神经网络这个东西比较火,准确的说是深度学习这个东西比较火,我们实验室准备靠这个东西发几个CCF A类的文章,虽然我不太懂这东西,兴趣也一般都是毕竟要跟随主流的,于是今天安装起了 Tensorflow 这个深度学习的框架. 安装好以后运行一个Demo ,如下: import tensorflow as tf a=tf.constant(2) b=tf.constant(20) with tf.Session() as sess: print(sess.run(a*b)) 运行结果如下: 2…
http://blog.csdn.net/maopig/article/details/6803141 在不少人的心目中,显卡最大的用途可能就只有两点——玩游戏.看电影,除此之外,GPU并没有其他的作用了.但是随着微软IE9的正式发布,不少人突然发现,微软一直提到一个名词:GPU硬件加速,从而也让不少人开始关注GPU硬件加速.那么GPU硬件加速到底是什么?能干些什么呢?下面让我们一起走进GPU硬件加速的世界去看看吧. GPU硬件加速就是显卡辅助CPU进行图形运算 要说起GPU硬件加速,我们首先要…
Mask R-CNN - Train on Shapes Dataset This notebook shows how to train Mask R-CNN on your own dataset. To keep things simple we use a synthetic dataset of shapes (squares, triangles, and circles) which enables fast training. You'd still need a GPU, th…
pytorch------cpu与gpu load时相互转化 torch.load(map_location=)学习 将gpu改为cpu时,遇到一个报错:RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with…
将gpu改为cpu时,遇到一个报错: RuntimeError: Attempting to deserialize object on a CUDA device but torch.cuda.is_available() is False. If you are running on a CPU-only machine, please use torch.load with map_location='cpu' to map your storages to the CPU. 此时改为:…
假如我们得到了如下的checkpoints, 上面的文件主要可以分成三类:一种是在保存模型时生成的文件,一种是我们在使用tensorboard时生成的文件,还有一种就是plugins这个文件夹,这个是使用capture tpuprofile工具生成的,该工具可以跟踪TPU的计算过程,并对你的模型性能进行分析,这里就不想详细介绍了.本文主要介绍前面两种文件的作用: tensorboard文件 events.out.tfevents.*...: 保存的就是你的accuracy或者loss在不同时刻的…
  一.GPU是什么?与显卡是什么关系?安装在什么地方?有单独的GPU板卡吗? GPU就是图像处理芯片,外表与CPU有点相似.显卡的芯片,AMD的一个技术,相当于电脑的处理器CPU,只不过它是显卡的大脑或心脏.GPU是显卡的核心,显卡,则是由GPU.显存.电路板,还有BIOS固件组成的,所以GPU不等于显卡.GPU只是显卡上的一个核心处理芯片,是显卡的心脏,不能单独作为外接扩展卡使用,GPU因并行计算任务较重,所以功耗较大,只能焊接在显卡的电路板上使用.显卡上都有GPU,它是区分显性能的最主要元…