CF1109B Sasha and One More Name】的更多相关文章

CF1109B Sasha and One More Name 构造类题目.仔细看样例解释能发现点东西? 结论:答案只可能是 \(Impossible,1,2\) . \(Impossible:\) 有 \(n\) 个或 \(n-1\) 个相同的字母,显然无法拼出另一个回文串.(样例3) \(1:\) \(Cut\) \(1\) 次,相当于是做了原串的一个循环排列. \(O(n^2)\) 对所有循环排列验证是否符合要求即可.(样例4) \(2:\) 在原串中找出一段 \(len<n/2\) 的前…
C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard input output: standard output Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types: 1 l…
题目链接: E. Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input standard input output standard output Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types:…
Sasha and Array time limit per test 5 seconds memory limit per test 256 megabytes input standard input output standard output Sasha has an array of integers a1, a2, ..., an. You have to perform m queries. There might be queries of two types: 1 l r x …
C. Sasha and Array 题目大意&题目链接: http://codeforces.com/problemset/problem/718/C 长度为n的正整数数列,有m次操作,$opt==1$时,对$[L,R]$全部加x,$opt==2$时,对$[L,R]$求$\sum_{i=L}^{R}Fibonacc(a_{i})$. 题解: 线段树+矩阵快速幂. 在每个线段树存一个转移矩阵,然后YY即可. 代码: #include<cstdio> #include<cstrin…
Problem   Codeforces Round #539 (Div. 2) - D. Sasha and One More Name Time Limit: 1000 mSec Problem Description Input The first line contains one string s (1≤|s|≤5000) — the initial name, which consists only of lowercase Latin letters. It is guarante…
Problem   Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax Time Limit: 2000 mSec Problem Description Input The first line contains one integer n (2≤n≤3⋅10^5) — the size of the array. The second line contains n integers a1,a2,…,an (0≤ai<2^…
CF719E. Sasha and Array 题意: 对长度为 n 的数列进行 m 次操作, 操作为: a[l..r] 每一项都加一个常数 C, 其中 0 ≤ C ≤ 10^9 求 F[a[l]]+F[a[l+1]]+...F[a[r]] mod 1e9+7 的余数 矩阵快速幂求斐波那契 矩阵满足乘法分配律和结合律! 所以可以每个节点维护矩阵/矩阵和,区间加相当于区间乘矩阵 注意:不要把快速幂写在里面,复杂度平添一个log.把\(B^C\)算出来之后传进去就好了 #include <iostr…
Sasha and Interesting Fact from Graph Theory n 个 点形成 m 个有标号森林的方案数为 F(n, m) = m * n ^ {n - 1 - m} 然后就没啥难度了... #include<bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #defin…
CF1109D Sasha and Interesting Fact from Graph Theory 这个 \(D\) 题比赛切掉的人基本上是 \(C\) 题的 \(5,6\) 倍...果然数学计数问题比数据结构更受欢迎... 以下大致翻译自官方题解. 枚举 \(a\to b\) 路径上边的数目,记为 \(edges\) . 先来考虑给定的两个点路径上的 \(edges-1\) 个点(不含 \(a,b\) )和 \(edge\) 条边. 节点有\(edges-1\)个,顺序不同则最后的树不同…