原文:http://blog.csdn.net/arthur503/article/details/19974057 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libsvm中,完全就是一个工具包,拿来就能用.当时问了好几遍老师,公司里做svm就是这么简单的?敲几个命令行就可以了...貌似是这样的.当然,在大数据化的背景下,还会有比如:并行SVM.多核函数SVM等情况的研究和应用. 实验环节老…
使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libsvm中,完全就是一个工具包,拿来就能用.当时问了好几遍老师,公司里做svm就是这么简单的?敲几个命令行就可以了...貌似是这样的.当然,在大数据化的背景下,还会有比如:并行SVM.多核函数SVM等情况的研究和应用. 实验环节老师给的数据很简单,也就1000个数据点,使用svm进行分类.没有太多好说的…
由于KNN的计算量太大,还没有使用KD-tree进行优化,所以对于60000训练集,10000测试集的数据计算比较慢.这里只是想测试观察一下KNN的效果而已,不调参. K选择之前看过貌似最好不要超过20,因此,此处选择了K=10,距离为欧式距离.如果需要改进,可以再调整K来选择最好的成绩. 先跑了一遍不经过scale的,也就是直接使用像素灰度值来计算欧式距离进行比较.发现开始基本稳定在95%的正确率上,吓了一跳.因为本来觉得KNN算是没有怎么“学习”的机器学习算法了,猜测它的特点可能会是在任何情…
使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Test change pixel data into more categories than 0/1:#int(pixel)/50: 37%#int(pixel)/64: 45.9%#int(pixel)/96: 52.3%#int(pixel)/128: 62.48%#int(pixel)/152…
一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试样本集.mnist数据库官方网址为:http://yann.lecun.com/exdb/mnist/ .可直接下载四个解压文件,分别对应:训练集样本.训练集标签.测试集样本和测试集标签.解压缩之后发现,其是在一个文件中包含了所有图像. 二.caffe支持的数据格式:Lmdb和Leveldb 它们都…
使用自己准备的mnist数据集,将0-9的bmp图像分别放到0-9文件夹下,然后用mxnet训练. 1.制作rec数据集 (1).制作list…
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数据集进行训练和利用caffe来实现别人论文中的模型(目前在尝试的是轻量级的SqueezeNet)三步走.不求深度,但求详细.因为说实话caffe-windows的配置当初花了挺多时间的,目前貌似还真没有从头开始一步步讲起的教程,所以博主就争取试着每一步都讲清楚吧. 这里说些题外话:之所以选择Sque…
Mat格式mnist数据集下载地址:http://www.cs.nyu.edu/~roweis/data.html Matlab转换代码: load('mnist_all.mat'); type = 'train'; savePath = 'G:\data\mnist\train\'; :: numStr = num2str(num); tempNumPath = strcat(savePath, numStr); mkdir(tempNumPath); tempNumPath = strcat…
caffe在windows上的配置和编译能够參考例如以下的博客: http://blog.csdn.net/joshua_1988/article/details/45036993 http://blog.csdn.net/joshua_1988/article/details/45048871 http://blog.csdn.net/dongb5lz/article/details/45171187 http://m.blog.csdn.net/blog/thesby/43535619 依照…
个人认为学习一个陌生的框架,最好从例子开始,所以我们也从一个例子开始. 学习本教程之前,你需要首先对卷积神经网络算法原理有些了解,而且安装好了caffe 卷积神经网络原理参考:http://cs231n.stanford.edu/syllabus.html Ubuntu安装caffe教程参考:http://caffe.berkeleyvision.org/install_apt.html 先讲解一下caffe设计的架构吧: 训练mnist数据集使用 build/tools/caffe 训练步骤:…
上一篇记录的是学习caffe前的环境准备以及如何创建好自己需要的caffe版本.这一篇记录的是如何使用编译好的caffe做训练mnist数据集,步骤编号延用上一篇 <实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY) >的顺序. 二:使用caffe做图像分类识别训练测试mnist数据集 1.下载MNIST数据集,MNIST数据集包含四个文件信息,见表格: 文件 内容 train-images-idx3-ubyte.gz 训练集图片 - 55000 张 训练图…
如果说"Hello Word!"是程序员的第一个程序,那么MNIST数据集,毫无疑问是机器学习者第一个训练的数据集,本文将使用Google公布的TensorFLow来学习训练MNIST数据集. 本文结构分为三个部分,一是如何使用TensorFLow来学习训练MNIST数据集,二是运行结果,三是问题小结. 一. TensorFLow来学习训练MNIST 在github上下载数据:https://github.com/tensorflow/tensorflow/tree/master/te…
title: "Python实现bp神经网络识别MNIST数据集" date: 2018-06-18T14:01:49+08:00 tags: [""] categories: ["python"] 前言 训练时读入的是.mat格式的训练集,测试正确率时用的是png格式的图片 代码 #!/usr/bin/env python3 # coding=utf-8 import math import sys import os import numpy…
有一个关于mnist的一个事例可以参考,我觉得写的很好:http://www.cnblogs.com/x1957/archive/2012/06/02/2531503.html #!/usr/bin/env python # -*- coding: UTF-8 -*- import struct # from bp import * from datetime import datetime # 数据加载器基类 class Loader(object):     def __init__(sel…
在win10机子上装了caffe,感谢大神们的帖子,要入坑caffe-windows的朋友们看这里,还有这里,安装下来基本没什么问题. 好了,本博文写一下使用caffe测试mnist数据集的步骤. 1. 下载mnist数据集. 不太看得懂get_mnist.ps1文件,并且运行无效,所以选择直接从mnist官网下载数据集.下载后解压,从解压后的文件夹提取出四个文件,放在caffe根目录下<caffe-root>\data\mnist下,例如E:\caffe-windows\data\mnist…
下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib.tensorboard.plugins import projector old_v…
RNN介绍   在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Network, CNN)有一定的了解.对于FCNN和CNN来说,他们能解决很多实际问题,但是它们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的 .而在现实生活中,我们输入的向量往往存在着前后联系,即前一个输入和后一个输入是有关联的,比如文本,语音,视频等,因此,我们需要了解深度学习中…
最近在看这本书看到Chapter 3.Classification,是关于mnist数据集的分类,里面有个代码是 from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original') mnist 我十分郁闷,因为这个根本加载不出来-_-||,报了个OSError,改了data_home之后也有error,然后我按照网上的方法改data_home也没用,弄了很久最后决定自己弄这个数据集出来(气死了) 百度搜…
包含一个隐含层的全连接神经网络结构如下: 包含一个隐含层的神经网络结构图 以MNIST数据集为例,以上结构的神经网络训练如下: #coding=utf-8 from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # 加载数据 mnist = input_data.read_data_sets('/home/workspace/python/tf/data/mnist', one_hot=…
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训练,在MNIST数据集中每张图像的分辨率为28*28,即784维,对应于上图中的x; 而输出为数字类别,即0~9,因此上图中的y的维度维10.因此权重w的维度为[784, 10],wi,j代表第j维的特征对应的第i类的权重值,主要是为了矩阵相乘时计算的方便,具体见下面代码. 训练过程 1.训练过程中…
tensorflow读取本地MNIST数据集 数据放入文件夹(不要解压gz): >>> import tensorflow as tf >>> from tensorflow.examples.tutorials.mnist import input_data >>> MNIST_data =r'D:\tensorflow\mnist' >>> mnist = input_data.read_data_sets(MNIST_data,…
1. tf.matmul(X, w) # 进行点乘操作 参数说明:X,w都表示输入的数据, 2.tf.equal(x, y) # 比较两个数据对应位置的数是否相等,返回值为True,或者False 参数说明:x,y表示需要比较的两组数 3.tf.cast(y, 'float') # 将布尔类型转换为数字类型 参数说明:y表示输入的数据,‘float’表示转换的数据类型 4.tf.argmax(y, 1) # 返回每一行的最大值的索引 参数说明:y表示输入数据,1表示每一行的最大值的索引,0表示每…
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度跟激活函数的梯度成正比(即激活函数的梯度越大,w和b的大小调整的越快,训练速度也越快) 3. 激活函数是sigmoid函数时,二次代价函数调整参数过程分析 理想调整参数状态:距离目标点远时,梯度大,参数调整较快:距离目标点近时,梯度小,参数调整较慢.如果我的目标点是调整到M点,从A点==>B点的调整…
在我的上一篇随笔中,采用了单层神经网络来对MNIST进行训练,在测试集中只有约90%的正确率.这次换一种神经网络(多层神经网络)来进行训练和测试. 1.获取MNIST数据 MNIST数据集只要一行代码就可以获取的到,非常方便.关于MNIST的基本信息可以参考我的上一篇随笔. mnist = input_data.read_data_sets('./data/mnist', one_hot=True) 2.模型基本结构 本次采用的训练模型为三层神经网络结构,输入层节点数与MNIST一行数据的长度一…
1.MNIST数据集简介 首先通过下面两行代码获取到TensorFlow内置的MNIST数据集: from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('./data/mnist', one_hot=True) MNIST数据集共有55000(mnist.train.num_examples)张用于训练的数据,对应的有55000个标签:共有10000(mnist.t…
学习了tensorflow的线性回归. 首先是一个sklearn中makeregression数据集,对其进行线性回归训练的例子.来自腾讯云实验室 import tensorflow as tf import numpy as np class linearRegressionModel: def __init__(self,x_dimen): self.x_dimen=x_dimen self._index_in_epoch=0 self.constructModel() self.sess=…
简单的训练MNIST数据集 (0-9的数字图片) 详细地址(包括下载地址):http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import input_data # 需要下载数据集(包括了input_data)# 加载数据集 mnist = input_data.read_data_sets(…
1. tensorflow 基本使用方法 2. mnist 数据集简介与预处理 3. 聚类算法模型 4. 使用卷积神经网络进行特征生成 5. 训练网络模型生成结果 how to install tensorflow in anaconda based win7: first step: We do not have any Miniconda installers based on Python 3.5 yet, but are going to base our Miniconda3 inst…
转自:https://blog.csdn.net/simple_the_best/article/details/75267863 MNIST 数据集已经是一个被”嚼烂”了的数据集, 很多教程都会对它”下手”, 几乎成为一个 “典范”. 不过有些人可能对它还不是很了解, 下面来介绍一下. MNIST 数据集可在 http://yann.lecun.com/exdb/mnist/ 获取, 它包含了四个部分: Training set images: train-images-idx3-ubyte.…
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: 文件列表:四个文件,分别为训练和测试集数据 Four files are available on 官网  http://yann.lecun.com/exdb/mnist/ : train-images-idx3-ubyte.gz:  training set images (9912422 by…