numpy.tile用法】的更多相关文章

在学习knn分类算法的过程中用到了tile函数,有诸多的不理解,记录下来此函数的用法.   函数原型:numpy.tile(A,reps) #简单理解是此函数将A进行重复输出 其中A和reps都是array_like的参数,A可以是:array,list,tuple,dict,matrix以及基本数据类型int,string,float以及bool类型,reps的类型可以是tuple,list,dict,array,int,bool,但不可以是float,string,matrix类型. 计较常…
numpy.tile()是个什么函数呢,说白了,就是把数组沿各个方向复制 比如 a = np.array([0,1,2]),    np.tile(a,(2,1))就是把a先沿x轴(就这样称呼吧)复制1倍,即没有复制,仍然是 [0,1,2]. 再把结果沿y方向复制2倍,即最终得到 array([[0,1,2], [0,1,2]]) 同理: >>> b = np.array([[1, 2], [3, 4]]) >>> np.tile(b, 2) #沿X轴复制2倍 arra…
一.jupyter notebook 两种安装和启动的方式: 第一种方式: 命令行安装:pip install jupyter 启动:cmd 中输入 jupyter notebook 缺点:必须手动去安装数据分析包(比如numpy,pandas...) 第二种方式: 下载anaconda软件 优点:包含了数据分析的基础包大概200个左右的科学运算包 jupyter notebook一些快捷键操作: 1. 运行当前代码并选中下一个单元格 shift+enter 2. 运行当前的单元格 crtl +…
repeat(*sizes) → Tensor Repeats this tensor along the specified dimensions. Unlike expand(), this function copies the tensor’s data. WARNING torch.repeat() behaves differently from numpy.repeat, but is more similar to numpy.tile. For the operator sim…
numpy.repeat(a, repeats, axis=None) >>> a = np.arange(3) >>> a array([0, 1, 2]) >>> np.repeat(a, 2) array([0, 0, 1, 1, 2, 2]) >>> a = [[0,1], [2,3], [4,5]]>>> y = np.repeat(a, 2)>>> yarray([0, 0, 1, 1,…
numpy 简介 numpy的存在使得python拥有强大的矩阵计算能力,不亚于matlab. 官方文档(https://docs.scipy.org/doc/numpy-dev/user/quickstart.html) 各种用法介绍 首先是numpy中的数据类型,ndarray类型,和标准库中的array.array并不一样. ndarray的一些属性 ndarray.ndim the number of axes (dimensions) of the array. In the Pyth…
numpy.where (condition[, x, y]) numpy.where() 有两种用法: 1. np.where(condition, x, y) 满足条件(condition),输出x,不满足输出y. 如果是一维数组,相当于[xv if c else yv for (c,xv,yv) in zip(condition,x,y)] >>> aa = np.arange(10) >>> np.where(aa,1,-1) array([-1, 1, 1,…
numpy.loadtxt(fname, dtype=, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0) frame要读取的文件.文件名或生成器: dtype数据类型,默认float: comment的是指, 如果行的开头为#就会跳过该行: delimiter分隔符,默认是空格: converters是对数据进行预处理的参数, 我们可以先定义一个函数,…
1.numpy.nonzero(condition),返回参数condition(为数组或者矩阵)中非0元素的索引所形成的ndarray数组,同时也可以返回condition中布尔值为True的值索引,其中,数值0为False,其余的都为True. >>>b=np.mat(np.arange(10)).T >>>b matrix([[0], [1], [2], [3], [4], [5], [6], [7], [8], [9]]) >>>np.nonz…
安装numpy : pip install numpy numpy数组生成方法总结 In [4]: import numpy as np #使用列表生成一个一维数组 data = [1,2,3,4,5] x = np.array(data) print(x) print(x.dtype) #打印数组类型 print(type(x)) [1 2 3 4 5] int32 <class 'numpy.ndarray'> In [6]: import numpy as np #使用列表生成一个二维数…