spark join broadcast优化】的更多相关文章

在大量数据中对一些字段进行关联. 举例 ipTable:需要进行关联的几千条ip数据(70k) hist:历史数据(百亿级别) 直接join将会对所有数据进行shuffle,需要大量的io操作,相同的key会在同一个partition中进行处理,任务的并发度也收到了限制. 使用broadcast将会把小表分发到每台执行节点上,因此,关联操作都在本地完成,基本就取消了shuffle的过程,运行效率大幅度提高. 样本数据(2000w)性能测试对比 小表没有进行broadcast 进行了broadca…
http://blog.csdn.net/lsshlsw/article/details/48975771 https://www.douban.com/note/499691663/ http://blog.csdn.net/kejiaming/article/details/52084898 http://www.cnblogs.com/MOBIN/p/5618747.html#4…
摘要: 本文将介绍 CBO,它充分考虑了数据本身的特点(如大小.分布)以及操作算子的特点(中间结果集的分布及大小)及代价,从而更好的选择执行代价最小的物理执行计划,即 SparkPlan. Spark CBO 背景 上文Spark SQL 内部原理中介绍的 Optimizer 属于 RBO,实现简单有效.它属于 LogicalPlan 的优化,所有优化均基于 LogicalPlan 本身的特点,未考虑数据本身的特点,也未考虑算子本身的代价. 本文将介绍 CBO,它充分考虑了数据本身的特点(如大小…
在spark中要进行join操作,如果在shuffle的时候进行join效率较低.如果满足 所需要join的表中有一张表较小,那么可以考虑在map端进行join操作. 转载:http://blog.csdn.net/lsshlsw/article/details/50834858 将多份数据进行关联是数据处理过程中非常普遍的用法,不过在分布式计算系统中,这个问题往往会变的非常麻烦,因为框架提供的 join 操作一般会将所有数据根据 key 发送到所有的 reduce 分区中去,也就是 shuff…
Spark排错与优化 http://blog.csdn.net/lsshlsw/article/details/49155087 一. 运维 1. Master挂掉,standby重启也失效 Master默认使用512M内存,当集群中运行的任务特别多时,就会挂掉,原因是master会读取每个task的event log日志去生成Sparkui,内存不足自然会OOM,可以在master的运行日志中看到,通过HA启动的master自然也会因为这个原因失败. 解决 增加Master的内存占用,在Mas…
1.写在前面 Spark是专为大规模数据处理而设计的快速通用的计算引擎,在计算能力上优于MapReduce,被誉为第二代大数据计算框架引擎.Spark采用的是内存计算方式.Spark的四大核心是Spark RDD(Spark core),SparkSQL,Spark Streaming,Spark ML.而SparkSQL在基于Hive数仓数据的分布式计算上尤为广泛.本编博客主要介绍基于Java API的SparkSQL的一些用法建议和利用Spark处理各种大数据计算的性能优化建议 2.Spar…
数据分析中将两个数据集进行 Join 操作是很常见的场景.在 Spark 的物理计划阶段,Spark 的 Join Selection 类会根 据 Join hints 策略.Join 表的大小. Join 是等值 Join 还是不等值以及参与 Join 的 key 是否可以排序等条件来选择最 终的 Join 策略,最后 Spark 会利用选择好的 Join 策略执行最终的计算.当前 Spark 一共支持五种 Join 策略: Broadcast hash join (BHJ) Shuffle…
本文主要介绍spark join相关操作,Java描述. 讲述三个方法spark join,left-outer-join,right-outer-join 我们以实例来进行说明.我的实现步骤记录如下. 1.数据准备 2.HSQL描述 3.Spark描述 1.数据准备 我们准备两张Hive表,分别是orders(订单表)和drivers(司机表),通过driver_id字段进行关联.数据如下: orders hive (gulfstream_test)> select * from orders…
一. Hbase的region 我们先简单介绍下Hbase的架构和Hbase的region: 从物理集群的角度看,Hbase集群中,由一个Hmaster管理多个HRegionServer,其中每个HRegionServer都对应一台物理机器,一台HRegionServer服务器上又可以有多个Hregion(以下简称region).要读取一个数据的时候,首先要先找到存放这个数据的region.而Spark在读取Hbase的时候,读取的Rdd会根据Hbase的region数量划分stage.所以当r…
只有满怀自信的人,能在任何地方都怀有自信,沉浸在生活中,并认识自己的意志. 前言 最近公司有一个生产的小集群,专门用于运行spark作业.但是偶尔会因为nn或dn压力过大而导致作业checkpoint操作失败进而导致spark 流任务失败.本篇记录从应用层面对spark作业进行优化,进而达到优化集群的作用. 集群使用情况 有数据的目录以及使用情况如下: 目录 说明 大小 文件数量 数据数量占比 数据大小占比 /user/root/.sparkStaging/applicationIdxxx sp…