​  前言  本文介绍一种新的tokens-to-token Vision Transformer(T2T-ViT),T2T-ViT将原始ViT的参数数量和MAC减少了一半,同时在ImageNet上从头开始训练时实现了3.0%以上的改进.通过直接在ImageNet上进行训练,它的性能也优于ResNet,达到了与MobileNet相当的性能. 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 论文:Tokens-to-…
​  前言  ViT通过简单地将图像分割成固定长度的tokens,并使用transformer来学习这些tokens之间的关系.tokens化可能会破坏对象结构,将网格分配给背景等不感兴趣的区域,并引入干扰信号. 为了缓解上述问题,本文提出了一种迭代渐进采样策略来定位区分区域.在每次迭代中,当前采样步骤的嵌入被馈送到transformer编码层,并预测一组采样偏移量以更新下一步的采样位置.渐进抽样是可微的.当与视觉transformer相结合时,获得的PS-ViT网络可以自适应地学习到哪里去看.…
​前言  在计算机视觉中,相对位置编码的有效性还没有得到很好的研究,甚至仍然存在争议,本文分析了相对位置编码中的几个关键因素,提出了一种新的针对2D图像的相对位置编码方法,称为图像RPE(IRPE). 本文来自公众号CV技术指南的论文分享系列 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. ​ 代码:https://github.com/microsoft/Cream/tree/main/iRPE Background Transformer的核心是self-…
// http request 请求拦截器,有token值则配置上token值 axios.interceptors.request.use( config => { if (token) { // 每次发送请求之前判断是否存在token,如果存在,则统一在http请求的header都加上token,不用每次请求都手动添加了 config.headers.Authorization = token; } // sratload(); return config; }, err => { ret…
前言 如何将上个接口的返回token,传给下个接口当做请求参数?这是最常见的一个问题了. 解决这个问题其实很简单,我们只需取出token值,设置为一个中间变量a,下个接口传这个变量a就可以了.那么接下来就是解决两个问题: 如何取出token值? 如何参数关联? httprunner==1.5.8 场景案例 我现在有一个登陆接口A,登陆成功后返回一个token值.有一个获取绑定卡号的接口B,但是接口B必须要先登录后传登录的token才能访问 A接口登录接口文档基本信息 访问地址:http://12…
1.自定义拦截器: struts.xml: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 2.3//EN" "http://struts.apache.org/dtds/struts-2.3.dtd"> <…
文章原创自:微信公众号「机器学习炼丹术」 作者:炼丹兄 联系方式:微信cyx645016617 代码来自github [前言]:看代码的时候,也许会不理解VIT中各种组件的含义,但是这个文章的目的是了解其实现.在之后看论文的时候,可以做到心中有数,而不是一片茫然. VIT类 初始化 和之前的学习一样,从大模型类开始看起,然后一点一点看小模型类: class ViT(nn.Module): def __init__(self, *, image_size, patch_size, num_clas…
    学习caffe第一天,用SSD上上手. 我的根目录$caffe_root为/home/gpu/ljy/caffe    一.运行SSD示例代码    1.到https://github.com/weiliu89/caffe.git下载caffe-ssd代码,是一个caffe文件夹    2.参考已经配好的caffe目录下的makefile.config修改¥caffe_root下的makefile.config.    3.在$caffe_root下打开命令行终端,输入以下命令 make…
身份证校验程序 让编程改变世界 Change the world by program [caption id="attachment_2699" align="alignnone" width="366"] Dll案例[/caption] [caption id="attachment_2700" align="alignnone" width="366"] 身份证校验程序[/capt…
​  前言  ​​​​​​​本文介绍一个Pytorch模型的静态分析器 PyTea,它不需要运行代码,即可在几秒钟之内扫描分析出模型中的张量形状错误.文末附使用方法. 本文转载自机器之心 编辑:CV技术指南 关注公众号CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. 张量形状不匹配是深度神经网络机器学习过程中会出现的重要错误之一.由于神经网络训练成本较高且耗时,在执行代码之前运行静态分析,要比执行然后发现错误快上很多. 由于静态分析是在不运行代码的前提下进行的,因此可以帮…