Aircrack-ng介绍】的更多相关文章

http://www.freebuf.com/articles/wireless/140065.html 相信很多初次使用Kali Linux来进行无线渗透的小伙伴都曾遇到过一个非常头疼的问题,就是不知道如何选购一款合适的无线网卡.因为Kali Linux并不是所有的网卡都支持,一旦选错了网卡不仅会给我们造成经济上的损失,更会直接导致无线渗透的失败而终.那么我们究竟应该选择什么样的无线网卡呢?以下是我为大家整理的2017年最适用于Kali的无线渗透网卡. WiFi HACK初学者 Kali Li…
相信很多初次使用Kali Linux来进行无线渗透的小伙伴都曾遇到过一个非常头疼的问题,就是不知道如何选购一款合适的无线网卡.因为Kali Linux并不是所有的网卡都支持,一旦选错了网卡不仅会给我们造成经济上的损失,更会直接导致无线渗透的失败而终.那么我们究竟应该选择什么样的无线网卡呢?以下是我为大家整理的2017年最适用于Kali的无线渗透网卡. WiFi HACK初学者 Kali Linux是迄今为止最适用于初学者的渗透测试系统,我的HACK之路就是从kali的无线渗透开始的.想要成功渗透…
在7月底的时候,安全加介绍Fireeye出品的 免费恶意软件分析工具FlareVM,还可进行逆向工程和渗透测试 .今天是看到绿盟科技的一篇介绍Kali Linux配置的文章,这个工具也进入了 渗透测试工程师的17个常用工具列表 . 为什么要选择Kali Linux Kali Linux是基于Debian的Linux发行版, 设计用于数字取证和 渗透测试 .由Offensive Security Ltd维护和资助.最先由Offensive Security的Mati Aharoni和Devon K…
http://blog.csdn.net/zouxy09/article/category/1218765 图像卷积与滤波的一些知识点 图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09       之前在学习CNN的时候,有对卷积经常一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流.一.线性滤波与卷积的基本概念      线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果.做法很…
经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络.网络深度逐渐增加,训练的参数数量也骤增.AlexNet大约6000万参数,VGG大约上亿参数. 从中我们可以学习到随着网络深度增加,模型的效果能够提升.另外,VGG网络虽然很深,但是其结构比较规整.每经过一次池化层(过滤器大小为2,步长为2),图像的长度和宽度折半:每经过一次卷积层,输出数据的channel数量加倍,即卷积层中过滤器(filter)的数量. 残差网络(ResNet) 由于存在梯度消失与梯…
聚类算法,不是分类算法. 分类算法是给一个数据,然后判断这个数据属于已分好的类中的具体哪一类. 聚类算法是给一大堆原始数据,然后通过算法将其中具有相似特征的数据聚为一类. 这里的k-means聚类,是事先给出原始数据所含的类数,然后将含有相似特征的数据聚为一个类中. 所有资料中还是Andrew Ng介绍的明白. 首先给出原始数据{x1,x2,...,xn},这些数据没有被标记的. 初始化k个随机数据u1,u2,...,uk.这些xn和uk都是向量. 根据下面两个公式迭代就能求出最终所有的u,这些…
密码破解基本有三种方法:第一种是人工猜解(垃圾桶工程和被动信息收集): 第二种是基于字典暴力破解(主流) 在kali里,是默认自带了字典的,分别放在下面三个文件中:/usr/share/wordlist /usr/share/wfuzz/wordlist /usr/share/seclists,有一个password 第三种是键盘空间字符爆破 全键盘空间字符 部分键盘空间字符(基于规则) 数字,小写字母,大写字母,符号,空格,瑞典字符,高位ASCII码. 在kali中我们用crunch来制作密码…
1 训练/验证/测试集( Train/Dev/test sets ) 构建神经网络的时候有些参数需要选择,比如层数,单元数,学习率,激活函数.这些参数可以通过在验证集上的表现好坏来进行选择. 前几年机器学习普遍的做法: 把数据分成60%训练集,20%验证集,20%测试集.如果有指明的测试集,那就用把数据分成70%训练集,30%验证集. 现在数据量大了,那么验证集和数据集的比例会变小.比如我们有100w的数据,取1w条数据来评估就可以了,取1w做验证集,1w做测试集,剩下的用来训练,即98%的训练…
1 调试处理( tuning process ) 如下图所示,ng认为学习速率α是需要调试的最重要的超参数. 其次重要的是momentum算法的β参数(一般设为0.9),隐藏单元数和mini-batch的大小. 第三重要的是神经网络的层数和学习率衰减 adam算法的三个参数一般不调整,设定为0.9, 0.999, 10^-8. 注意这些直觉是ng的经验,ng自己说了,可能其它的深度学习研究者是不这么认为的. 那么如何选择参数呢?下面介绍两个策略,随机搜索和精细搜索. 早一代的机器学习算法中,如下…
神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方式讲解神经网络.适合对神经网络了解不多的同学.本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文. 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术.人脑中的神经网络是一个非常复杂的组织.成人的大脑中估计有1000亿个神经元之多. 图1 人脑神经网络 那么机…