Spark中Task,Partition,RDD.节点数.Executor数.core数目的关系和Application,Driver,Job,Task,Stage理解 from:https://blog.csdn.net/u013013024/article/details/72876427   有部分图和语句摘抄别的博客,有些理解是自己的 梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数.Executor数.core…
本文主要说一下Spark中Task相关概念.RDD计算时Task的数量.Spark Streaming计算时Task的数量. Task作为Spark作业执行的最小单位,Task的数量及运行快慢间接决定了作业运行的快慢. 开始 先说明一下Spark作业的几个核心概念: Job(作业):Spark根据行动操作触发提交作业,以行动操作将我们的代码切分为多个Job. Stage(调度阶段):每个Job中,又会根据宽依赖将Job划分为多个Stage(包括ShuffleMapStage和ResultStag…
版权声明:本文为原创文章,未经允许不得转载. 复习内容: Spark中Stage的提交 http://www.cnblogs.com/yourarebest/p/5356769.html Spark中Task的提交 1.在复习内容部分我们介绍了在方法onStageSubmitted中,Stage的提交,那么在该方法中还有Task的提交,如下所示: override def onStageSubmitted(stageSubmitted: SparkListenerStageSubmitted):…
hdfs中的block是分布式存储的最小单元,类似于盛放文件的盒子,一个文件可能要占多个盒子,但一个盒子里的内容只可能来自同一份文件.假设block设置为128M,你的文件是250M,那么这份文件占3个block(128+128+2).这样的设计虽然会有一部分磁盘空间的浪费,但是整齐的block大小,便于快速找到.读取对应的内容.(p.s. 考虑到hdfs冗余设计,默认三份拷贝,实际上3*3=9个block的物理空间.) spark中的partition 是弹性分布式数据集RDD的最小单元,RD…
[Java 并发]Executor框架机制与线程池配置使用 一,Executor框架Executor框架便是Java 5中引入的,其内部使用了线程池机制,在java.util.cocurrent 包下,通过该框架来控制线程的启动.执行和关闭,可以简化并发编程的操作.因此,在Java 5之后,通过Executor来启动线程比使用Thread的start方法更好,更易管理,效率更好(用线程池实现,节约开销). Executor框架主要包括:Executor,Executors,ExecutorSer…
梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数.Executor数.core数目的关系. 输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block.当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片,称为InputSplit,注意InputSplit不能跨越文件.随后将为这些输入分片生成具体的Task.Inp…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题第二篇文章,我们来看spark非常重要的一个概念--RDD. 在上一讲当中我们在本地安装好了spark,虽然我们只有local一个集群,但是仍然不妨碍我们进行实验.spark最大的特点就是无论集群的资源如何,进行计算的代码都是一样的,spark会自动为我们做分布式调度工作. RDD概念 介绍spark离不开RDD,RDD是其中很重要的一个部分.但是很多初学者往往都不清楚RDD究竟是什么,我自己也是一样,我在系统学习s…
工作原理 1.线程池刚创建时,里面没有一个线程.任务队列是作为参数传进来的.不过,就算队列里面有任务,线程池也不会马上执行它们. 2.当调用 execute() 方法添加一个任务时,线程池会做如下判断: a. 如果正在运行的线程数量小于 corePoolSize,那么马上创建线程运行这个任务: b. 如果正在运行的线程数量大于或等于 corePoolSize,那么将这个任务放入队列. c. 如果这时候队列满了,而且正在运行的线程数量小于 maximumPoolSize,那么还是要创建线程运行这个…
上一篇我们介绍了如何使用@Async注解来创建异步任务,我可以用这种方法来实现一些并发操作,以加速任务的执行效率.但是,如果只是如前文那样直接简单的创建来使用,可能还是会碰到一些问题.存在有什么问题呢?先来思考下,下面的这个接口,通过异步任务加速执行的实现,是否存在问题或风险呢? @RestController public class HelloController { @Autowired private AsyncTasks asyncTasks; @GetMapping("/hello&…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是spark专题的第四篇文章,我们一起来看下Pair RDD. 定义 在之前的文章当中,我们已经熟悉了RDD的相关概念,也了解了RDD基本的转化操作和行动操作.今天我们来看一下RDD当中非常常见的PairRDD,也叫做键值对RDD,可以理解成KVRDD. KV很好理解,就是key和value的组合,比如Python当中的dict或者是C++以及Java当中的map中的基本元素都是键值对.相比于之前基本的RDD,pariRDD可以支持…